
WAVES OF 
MATTER

CHAPTER 3



WAVE-FUNCTION
From our analysis of the double-slit gedanken experiment we have learnt:

1) The probability of an event in an ideal experiment is given by the square of the 
absolute value of a complex number ϕ which is called the probability amplitude:

(2) The propagation through space in time of the amplitude φ(x,t) resamples some properties

 of  waves (namely interference). For this reason it is called the WAVE-FUNCTION

How can we compute the wave function?

According to the uncertainty principle. being able to predict  φ(x,t) is all we can hope 
to achieve!!!



CRUSH COURSE ON WAVES

To compute the wave-function the first question we need to ask is: what is a  wave?

A traveling wave is function which keeps its shape while moving  
in space, i.e. 

the height  
at x at time t=0…

x

is the same as the height at  
position x+vt at time t…

f(x, t) = gf (x� vt) + gb(x+ vt)
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Indeed fluid-dynamics equations 
or Maxwell’s equations are in this form!

It is immediate to show that this 
type of function obeys the so-called 
WAVE EQUATION:
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where v is 
the velocity 
of the wave



PLANE WAVES

f+(x, t) = A⇥ e

i(xk�!t)

f�(x, t) = A⇥ e

i(xk+!t)

forward propagating

backward propagating

xTo obey the wave equation, k (wave vector) and ω (frequency) must be related by:

c2k2 = !2 (dispersion relation)

We recall that , the wave vector is proportional to the momentum carried by the wave!

Not quite what we need. Indeed we know 
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Energy of a quantum particle is 
proportional to the frequency of the 
associated wave 

h⌫ Ek = ~! = ~ k2
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WAVES OF FREELY TRAVELING MATTER:

Plane traveling waves are also solutions of a slightly different type of equation

This time the dispersion relation is 
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! = Ck2 just what we need!!!
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We need to determine C:

�(x, t) = A e

i(!t±kx)

= A e

i
~ (~!t±~kx)

= A e

i
~
⇣

p2

2m t±~kx
⌘

The equation (*) is satisfied if:
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We then obtain:

A freely propagating quantum particle with fixed momentum is described by

(FREE PARTICLE)  
SCHRÖDINGER 

EQUATION
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Matter wave 

Traveling wave function have fixed velocity (momentum)! Position is unspecified!! 

|�(x, t)|2 = uniform in space

Heisemberg’s principle is safe!!!!!



Suppose we are interested in knowing the probability of observing the particle with a 
certain momentum Prob(p,t) (typical in scattering problems)

WAVE-FUNCTION IN MOMENTUM REPRESENTATION

QUESTION: How can we calculate it from the wave function φ(x,t) ?

STATEMENT (not proven here): one needs to compute the Fourier Transform of φ(x,t): 

wave function  
in momentum 

 representation

Then in analogy with the probability in position representation 

P(p, t) = |�̃(p, t)|2
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To convince ourselves this is the right thing to do, let’s recall Heisemberg’s 
uncertainty principle: increased information on x implies decreased info on p
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more localisation on x  
( larger λ) 

=> less localization on p  
(smalle 1/λ)



Frequency representation

We can Fourier transform also time!

�̃(p,E) =

Z 1
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dtp
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|�̃(p,E)|2 Amplitude to find the particle with momentum p and energy E

By the same argument of p, x: �E�t � ~
2

One more 
uncertainty  
relationship!



A mathematical relationship 
(directly from rules of integration 

by parts):
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This enables us to understand what the Schrödinger equation means!!

We obtain find a sensible stament:

E �̃(p,E) =
p2

2m
�̃(p,E)

Indeed by Fourier transforming both terms: 

The energy of a free particle 
 is given by the kinetic energy!



FULL TIME-DEPENDENT SCHRÖDINGER EQUATION (i.e with interactions)

…then we are ready to guess the structure of the Schrödinger equation if the 
particle is subject to a potential V(x): just add it up to Ek!

We have learnt that this term in the free SE accounts for the kinetic energy
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quantum  
state

coord. rep. wave-function

mom. rep. wave-function

coord. rep. Schrödinger eq.

mom. rep. Schrödinger eq.

Fourier 
transf.

Inverse Fourier 
transf.

Fourier 
transf.

Inverse Fourier 
transf.

Summary



The time-dependent Schrödinger equation (TSE) is a partial differential equation 
and is very difficult to solve, even numerically. The problem can be however  
strongly simplified by making an ansatz*: 
 

TIME-INDEPENDENT SCHRÖDINGER EQUATION 
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(TISE)

NB: (TISE) defines an eigenvalue problem,   
much easier to find numerical or analytical solutions

The solutions are called  
Eigenstates of H

A quantum particle can be found only in one of the eigenstates !!!
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Energy Spectrum and States

E0

E1

E2

Discrete energy levels 
(energy quantization)

Continuum  
of states  

(unbound)

Orbitals of chemistry are representations of the 
approximate  elecronic wave-functions  

of different states ψn(x)

ψ1(x)
ψ0(x)

ψ2(x)

(first excited-state)

(ground-state)

(second excited-state)
BOUND STATES}

the integer numbers which label 
the different 

states are called QUANTUM 
NUMBERS



BOHR’S POSTULATE (Copenhagen Interpretation)

Consider a wave function for one particle in 3D: ψ(x,y,z; t)
Solution of the Schrödinger equation.

Then the quantity 

p(x, y, t) = | (x, y, z; t)|2 dx dy dz

Is to be interpreted as the probability to observe through a  measurement 
at time t the particle in a small volume dV=dx dy dz centered at x,y,z

NB: Quantum mechanics does not give information about the position 
of the particle. It gives information about the result of measuring the 

position of the particle



Electron’s probability density in a hydrogen atom

Mp >> me:p+

e-

Ĥ = �~2 r2

2me
� e2

r

In some excited states, the 
electron cannot be found at 

certain  
distances from the proton 

Counter-intuitive predictions: 



DISPERSING WAVE :  
Traveling waves are not the only solutions of the Schrödinger equation.  

EXERCIZES:
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Show that the wave function 

1) Discuss the degree of initial uncertainty on position  
as a function of the parameter λ…

2) Show that it satisfies the free Schrödinger  
equation at any time t



1-DIMENSIONAL SQUARE WELL POTENTIAL:

Consider a particle interacting with the potential

V =

(
0 |x| < L/2

1 |x| > L/2

1) Solve the stationary Schrödinger equation. Find spectrum of energy levels and 
corresponding stationary wave functions 

2) Construct the correpsonding time-dependent wave-functions 
3) Assume that a particle in this potential can perform transitions from eigenstates 
by absorbing or emitting photons, compute the spectrum frequency of the absorbed  
radiation



SPECTRUM OF THE HYDROGEN ATOM
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R = 1.097373×107 m−1

(Rydberg Constant)

Consider an electron in the Coulomb field generated by a proton (considered very heavy)
1) Write down the (3D) hamiltonian and the corresponding Schrödinger equation.

2) This equation has been solved exactly. The spectrum of energy levels is given by

E = E0
1

n02
where E0=-13.6 eV
(1 eV = 1.602×10-19 Joules) 

Show that such an atom can absorb or emit only photons with energy given by the formula 

E = E0

✓
1

n02 � 1

n2

◆

Show that the corresponding wavelength of the emitted photons obeys the rule

Identify the color of the first line (n=1, n’=2)


