Introduction to Hilbert Spaces and their
Applications in Quantum Mechanics

Pietro Faccioli

November 6, 2017

Warning: these notes provide neither a complete nor a mathematically rig-
orous overview the theory of Hilbert Spaces. The purpose of these notes is,
instead, merely that of giving a basic introduction to these concepts in the
perspective of their applications to quantum mechanics. They are targeted for
Master students in quantitative and computational biology.

1 From Vector to Hilbert Spaces

1.1 Basic Definitions

We recall that, in classical mechanics, the instantaneous state of a single
particle is entirely specified by two vectors: the position r(¢) and its momentum
(or, equivalently, its velocity) p(t), which live in real vector spaces. The most
important property of vector spaces is linearity: any linear combination of
elements arbitrarily chosen inside the vector space V is still an element of the
same vector space:

For any v,w € V and a,b € R : av+bw eV (1)

Note that, here, we are specifically restricting to real vector spaces, i.e. request-
ing that a,b € R. Vector spaces are usually equipped with an inner product (or,
equivalently, scalar product), i.e. an operation taking as input two vectors and
giving as output a scalar, specifically a real number for real vector spaces:

(v,zw)=v-w=w-vER. (2)

The most important property of the scalar product is bi-linearity, i.e. linearity
with respect to both vectors given in input:

2
(Cll Vi + as V2)'(b1 W1+b2 Wl)z Z a; bk V; - Wi. (3)
i,k=1

In quantum mechanics, instead, the state of a particle is instantaneously
described by a so-called quantum state |¢(¢)) that belongs to a new mathe-
matical object called Hilbert Space — herby denoted with H—. Hilbert spaces
provide a suitable generalization of the notion of vector spaces, in a sense to be



discussed below. The most important property of a Hilber Space is, therefore,
that any linear combination of quantum states is still inside the Hilbert spaces:

For any |¢),|¢) € H and a, B € C : aly) + Bloy e H (4)

Note that linear combinations are here defined with respect to complex coeffi-
cients (as opposed to real coefficients appearing in (1)). Just as in real vector
spaces, in Hilbert spaces we can define a scalar product which takes as input to
quantum states and gives as output a complex number:

(Wlo) = ((oly))* € C. ()

Notice an important difference with respect the definition of inner product in a
real vector space: in Hilbert spaces, reversing the order of elements in the inner
spaces leads to the complex conjugate result. Just as in real vector spaces, the
most important property of the inner product in H is its bi-liniearity:

1€) = anlthr) + aaltba) N en s
LD SR Ty = = 201 (0ilo)

1.2 Complete orthonormal bases and projection

In standard vector spaces we are familiar with the concept of orthonormal basis
vectors, i.e. a set form of elements which are mutually orthogonal and have
unitary norm:

€;-€; = 5ij (6)

where d;; is the so-called Kronecker-Delta and is defined as follows:

1 fori—i
dij = O”. j (7)
0 foriz#j

(In passing note the following property of the Kronecker-Delta which will be
used later:

D GiA = A (8)
j

)

A set of N versors is said to form a complete orthonormal basis of the vector
space V if for any vector v € V there exist a unique set of N real coefficients
Al,...,Any which enable to express v as a linear combination of eq,...,exn:

N
vV = Z /\k €L (9)
k=1

In this case N is called the dimension of the vector space. The set of coefficients
A1,...,An are called the coordinates of the vector v in the given complete
orthonormal basis {eg}r=1,. ~.

Similarly, a set of quantum states is defined to be a complete orthonormal
basis of the Hilbert space H if (i) they are mutually orthogonal, (i) have unit



norm and (iii) if any state can be written as linear combination of them. How-
ever, a fundamental difference distinguishes bases of Hilbert spaces from bases
of standard vector spaces: the elements of a complete orthonormal basis of a
Hilbert space may form an infinite and dense set.

As practical example, let’s consider the set of position quantum states |x).
Clearly, two positions can differ by an infinitesimal amount, therefore we need
a continuous index x to label them. Two position states are said to obey the
orthonormality condition if the following generalization of Eq. (6) holds

(xly) =d(x—y) (10)

In this equation, however, d(x — y) denotes the so-called Dirac-delta, which is
defined by a property which generalises Eq. (8) to summations over a continuous
index (i.e. to integrals):

/ By Aly) 6(x —y) = A(x). (11)

The fact that position states form a basis of H expresses the fact that any
quantum state in the Hilbert space can obtained from a linear combination of
the position states:

[) = /dgx d(x)]x) where ¢(x) € C (12)

The complex function ¢(x) is called the wave function and can be regarded
as a dense and infinite set of complex coefficients (i.e. one for each different
position x). Therefore, Hilbert spaces are basically infinite dimension vector
spaces.

1.3 Operators

In general operators are defined by their action on the elements of the vector
space:

w = O0Ov (13)
In particular, O is linear if
@) (1v + agva) = a10v1 + asOvs (14)

Once a basis of a N-dimensional real vector space is defined, then each linear
operator can be assigned a N x N matrix, through the following procedure
(called “representation” of the operator in the specific basis):

N N
w=0v=w,=ej -w= Z(ei -v)ej - Oe; = ZOjin (15)
i=1

i=1

where v; = e; - v and O;; = e; - Oej.
In complete analogy, a linear operator O defined in an Hilbert space H
linearly maps a quantum state into another:

[w) =O0lv) O (a1v1) + azlva)) = a10Jv1) + a20vs) (16)



Following exactly the same procedure outlined for real vector space, operators in
Hilber spaces can be represented in a given orthonormal basis (e.g. the position
state basis), through a projection procedure:

lw) = Ol) = w(x) = (xjw) = / Py (y|v) (xOly) = / iy O(x,y) ¥(y) (17)

where w(x) and 1(x) denote the wave functions associated to the states |w) and
|1}, respectively. In most cases of interest, O(x,y) is a nearly local operator.
Here are some notable examples:

e Multiplicative operators: U(x,y) = §(x — y)u(y):

/dsy Ux,y) ¥(y) = u(x)(x) (potential energy operator) (18)

e Derivative operators: T(x,y) = 7%6()( —y)Vi:
52
/d?’y T(x,y) ¥(y) = —%VQw(X) (kinetic energy operator) (19)

2 Spectral Theorem

The spectral theorem is a fundamental result in the theory of linear operators in
both vector and Hilbert spaces and specifies the general conditions under which
operators can be diagolalized to yield a complete orthonormal basis.

Our starting point is to define the adjoint (or Hermitian conjugate) op-
erator OT of a generic linear operator O, as one for which the following identity
is satisfied (here expressed with the notation of vector spaces):

(vO', w) = (v,Ow) (20)

An operator is called Hermitian if it is self-adjoint, i.e. of it coincides with its
Hermitian conjugate: O = Of. Furthermore an operator U of is called Unitary
if UTU = 1.

Spectral Theorem: Let O be an Hermitian operator defined on a Hilbert
space H. Then there exist a complete orthonormal basis of H defined by the
eigenstates of O. Furthermore, each eigenvalue is real.

Corollary 1: Hermitian matrices are such that (OT)* = O.
Corollary 2: Hermitian matrices in real vector space are symmetric.

Corollary 3: Given a complete orthonormal basis of a Hilbert space {|e,)}
(possibly dense) and a hermitian operator O, it is possible to identify a unitary
transformation which connects the {|e,)} with the basis of eigenstates of O,
{lon)}-

Note that the spectral theorem of standard linear algebra follows as a special
case of this fundamental result.



3 Fourier Transform

A special case of basis change is provided by the so-called Fourier transforma-
tion. Let ¢(x be the wave function in coordinate representation. The unitary
transformation to the momentum basis is called (direct) Fourier transform and
is defined by:

oo

Flo(x)] = d(p) = / dx eFP 3(x) (21)

— 00

The inverse transformation (from the momentum basis to the position basis) is
called the inverse Fourier transform:

N S L
P = o) = [ 5B et dp) (22)

Note that the (27)~2 in the inverse Fourier transform is conventionally intro-
duced and guarantees the preservation of the normalization condition. In the
mathematical literature sometimes authors adopt a slightly different conven-
tion, with factors /(27)3 appearing in denominators of both direct and inverse
transforms.

An important property of Fourier transform is the following:

~ Rl 3 i ~
F'p é(p)] = / T oo p ¢(p)

o (2m)3
- (o) [ e i
— (15 o) (23)

where a% denotes the gradient operator.
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