CHAPTER 4

MAKING PREDICTIONS IN QM

Rules of the game of non-relativistic quantum mechanics (Schrödinger picture)

* a physical system at any given time is associated to a "ray" in Hilbert space

$$|\psi(t)
angle$$

NB: The "ray" reduces to a "vector" when the normalization condition is enforced

* The time evolution of the quantum state is determined by the Schrödinger equation:

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$$

* Any experimentally observable quantity ${\cal O}$ is associated to an hermitian operator $\hat{{\cal O}}$ in this Hilbert space

* The possible outcomes of the observation of a quantity O associated to the operator \hat{O} are only its eigenvalues o_i . The probability of observing o_i can be calculated by computing the square modulus of the projection on the corresponding eigenstate $|o_i\rangle$: i.e.

 $P(o_i) = |\langle o_i | \psi(t) \rangle|^2$

* After the measurement, leading to a result o_i , the system is collapsed in a quantum state given by the corresponding eigenvector lo_i >

Three Important Theorems:

1) Suppose a system is in the quantum state of a system is $|\psi\rangle$, then the average outcome of a measurement of an observable \hat{O} is given by the so-called expectation value:

$$\langle O \rangle = \langle \psi | \hat{O} | \psi \rangle$$

Corollary 1: if $|\psi\rangle$ is an eigenstate of \hat{O} with eigenvalue o then the expectation value trivially leads <O>=o.

Corollary 2: in coordinate representation, the expectation value is written as

$$\langle O \rangle = \frac{\int dx \, \phi^*(x,t) \, \hat{O}_x \, \phi(x,t)}{\int dx \phi^*(x,t) \phi(x,t)}$$

In this equation $\varphi(x,t) = \langle x|\psi(t)\rangle$ is the wave function associated to the state in coordinate representation and $\hat{O}x$ is defined by the projection of \hat{O} :

$$\langle x|\hat{O}|x'\rangle = \delta(x-x') \hat{O}_x$$

2) Let us consider a generic hermitian operator O which is an analytic function of momentum and position operators:

$$\hat{O} = f(\hat{P}, \hat{X})$$

Then, the projection of Ô into coordinate representation is built as follows

$$\langle x|\hat{O}|x'\rangle = \delta(x-x') \ \hat{O}_x = \delta(x-x') \ f\left(-i\hbar\frac{\partial}{\partial x},x\right)$$

3) Two hermitian operators Ô, Ê have the same complete orthonormal set of eigenstates if and only if their **commutator** vanishes:

$$[\hat{O}, \hat{E}] \equiv \hat{O}\hat{E} - \hat{E}\hat{O} = 0$$

What do expectation values mean in practice?

Consider a system in a generic state described by a the wave function $\psi(x)$. The result of performing a measurement of the observable associated to the operator O will yield a different result:

outcome:

average:

N independent measurements

$$\Leftrightarrow$$

 $O_{N-1} = O$

 $O_N = O'$

$$\downarrow$$
 $\lim_{N \to \infty}$

$$rac{1}{\mathrm{V}}\sum_{i=1}^{N}O_{i}\equiv\langle 0$$

Now consider the special case in which $\psi(x)$ is an eigenstate of O, with eigenvalue o: $O_1 = 0$

$$\Leftrightarrow$$

$$\begin{array}{c}
O_2 = 0 \\
O_3 = 0
\end{array}$$

$$O_4 = 0$$

$$O_5 = 0$$

All measurements yield the same result! Examples of construction of operators O(X, P):

Kinetic energy:
$$T=rac{p^2}{2m} \Rightarrow \hat{T}=-rac{\hbar^2}{2m}\hat{
abla}^2$$

Potential energy:
$$V = V(x) \Rightarrow \hat{V} = V(x)$$

Angular Momentum:
$$\vec{L} = \vec{r} \times \vec{p}$$
 $\Rightarrow \hat{\vec{L}} = \hat{\vec{r}} \times (-i\hbar \hat{\vec{\nabla}})$

Assuming normalised wave-functions, the expectation value read:

Average kinetic energy

$$\langle T \rangle = -\frac{\hbar^2}{2m} \int dx \; \psi^*(x) \nabla^2 \psi(x)$$

Average potential energy

$$\langle V \rangle = \int dx \psi^*(x) V(x) \psi(x)$$

Excercize: Consider the wave function

$$\psi(x) = C e^{-\frac{x^2}{4\sigma^2}}$$

- 1) normalise it by determining C
- 2) compute <T> and <V>
- 3) Show that it is an eigenstate of the Harmonic oscillator Hamiltonian!
- 4) find the corresponding eigenvalue!
- 5) Is the function

$$\phi(x) = C' \sin(x) e^{-\frac{x^2}{4\sigma^2}}$$

an eigenstate of H?

Example: Consider an eigenstate of the Hamiltonian H

$$\hat{H}\psi_n(x) = E_n\psi_n(x)$$

If my physical system is in the quantum state described by the wave function $\psi_n(x)$ then each measurement of the total energy will give the result E_n !!!!

COROLLARY:

an isolated system initially prepared in an eigenstate of H will remain there forever!

NB:

this is not true if the system is <u>not</u> isolated: for example photons can excite the state of molecules:

Schrödinger's Cat

The cat is simultaneously dead and alive!

It collapses to either state only upon observation

Expectation value:

=> Average fraction of alive cat at time t <f(t)>