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Orbital Angular Momentum

Following the quantisation rules defined in the previous  
chapter we obtain an expression for the orbital angular momentum 
in position representation:
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Thus it is possible to simultaneously determine the 
 magnitude and one component of L

it is impossible to measure with infinite  
accuracy more than one component 

(Uncertainty Principle for angular momentum)



Recall also:

Information on Lz 
destroys information 

on Lx, Ly!

It is only possible to 
specify the modulus of 
the angular momentum 

and the value of its 
projection along ONE 

axis. 

Uncertainty Principle



Spectrum of L2:

From  commutation relationships we can find states which are 
eigenstates to L2 and Lz:

|l,miwe denote them by 

eigenvalue 
of L2

eigenvalue 
of Lz

L̂2|l,mi = ~2l(l + 1)|l,mi

L̂z|l,mi = ~m|l,mi m = �l,�l + 1, .., 0, .., l � 1, l

l = 0, 1, 2, ...

Spectrum of Lz:



Advanced topic:  
Eigenstates and spectrum of Angular Momentum

To derive the spectrum and to construct the related 
eigenfunctions it is useful to introduce spherical 
coordinates: 

All differential operators can be expressed  in spherical coords. In particular, the 
Laplacian reads:

b. THE QUANTUM MECHANICAL HAMILTONIAN

The eigenvalue problem in the coordinate representation is given as
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The quantum angular momentum operator is

L̂ = (�i~r)⇥ r̂

In polar coordinates one finds

b. THE QUANTUM MECHANICAL HAMILTONIAN
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We need to find functions such that

These functions  have been found in mathematical physics:

L̂zYlm(✓,�) = ~2l(l + 1)Ylm(✓,�)

L̂2Ylm(✓,�) = ~mYlm(✓,�)

(SPHERICAL HARMONICS) (Associated Laguerre polynomials)



Advanced topic:  
Motion of a quantum particle in a central potential

First review the classical discussion: 

1. Outline of the problem

a. REVIEW OF SOME CLASSICAL RESULTS
Let us consider now the position and velocity of the particle at time t. The velocity
can be decomposed into the radial vr and tangential velocity ~v? defined through the
relations
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dr
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The total energy of a particle in a central potential 

The total energy of the particle
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If the potential depends only on  r=|r|, then 
d

dt
L(t) = 0

H



centrifugal energy contribution  
to the effective potential

H =
1

2
mṙ2 + V (r) +

L2

2mr2
⌘ 1

2
mṙ2 + Veff (r)

Veff(r)

rTotal Energy

classical inversion points

repulsive 
centrifugal  

core



Quantum Mechanical treatment:

We need to solve the stationary Schrödinger equation:

b. THE QUANTUM MECHANICAL HAMILTONIAN

The eigenvalue problem in the coordinate representation is given as
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Recalling the expression for the Laplacian in polar coords:


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and that:
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We now make the following ansatz

�(r, ✓,�) = R(r) Y m
l (✓,�)

We obtain a new equation for each different values of l !!!:
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Finally defining 

We obtain an equation which is formally analog to 1D Schrödinger equation but with an 
effective potential:
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Complete analogy with classical case!

l=0 -> s-wave 
l=1 -> p-wave 
l=2 -> d-wave

R(r) ⌘ 1

r
u(r)



Electron’s probability density in a hydrogen atom

Mp >> me:p+

e-

Ĥ = �~2 r2

2me
� e2

r

In some excited states, the 
electron cannot be found at 

certain  
distances from the proton 

Counter-intuitive predictions: 



Remember the Stern-Gerlach experiment:

Magnetic moment (hence ang. mom.) 
 IS QUANTIZED in  

integer or half-integer units 
of 

Experimental observation:

All-up or all-down!

~

Angular momentum quantization

In electromagnetism, angular momentum is associated to a MAGNETIC MOMENT:

~µ = µ~L
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….no angular momentum….

In particular the splitting works as follows:
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And so on…..
NB: Lz is a quantum number



Electrons protons and neutrons have spin 1/2, i.e. 
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Non-relativistic spin 1/2 states  are conveniently described by 2-dimensional vectors,  
called SPINORS
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SPIN-STATISTICS CONNECTION

particles with half-integer spin are called FERMIONS:
               
(eg: electron, proton, neutron, neutrinos have all spin 1/2)

particles with integer spin are called BOSONS: 

(eg: photon (S=1) pion (S=0), Higgs particle (S=0), …)

FERMIONS and BOSONS behave very differently in quantum 
mechanics! Indeed, their wave function is said to obey different 
statistics. Let’s see what this is all about



PAULI EXCLUSION’S PRINCIPLE:

Two Fermions can not occupy the same quantum state 

n=1

n=2
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2
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2
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2
i

same collection of  
quantum numbers

|n,m, l, . . .i

DIRAC NOTATION

hn|Ô|mi =
Z

dx �⇤
n(x)Ô�m(x)



SPIN-STATISTICS RELATIONSHIP

Pauli exclusion principle is automatically satisfied if one assumes that the wave function 
of identical  BOSONS (FERMIONS) is symmetric (anti-symmetric) under exchange of 
particles

 (x1, x2) = ± (x2, x1)

if both particles are in the same point, x1=x=x2 then:

 (x, x) = � (x, x) which can be true only if 

NB: Actually one does not need to assume the above relationship between spin e 
symmetry of the wave function. It is a theorem which follows from combining quantum 
mechanics with Einstein’s special theory of relativity.

 (x, x) = 0


