CHAPTER 5

ANGULAR
MOMENTUM
IN QUANTUM
MECHANICS




Orbital Angular Momentum

Following the quantisation rules defined in the previous
chapter we obtain an expression for the orbital angular momentum
In position representation:
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Direct inspection reveals (see problem sheet):
| = ihL.,

] thL ., accuracy more than one component
: | (Uncertainty Principle for angular momentum)
| = <hL,

Furthermore: [ZA_JQ”I:ZJ = [Ey,_zz] — [Ez7£2] =1

it is impossible to measure with infinite

Thus it is possible to simultaneously determine the
magnitude and one component of L




Recall also:

Information on Lz
destroys information

on Lx, Ly!

Uncertainty Principle
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specify the modulus of

Source —  SC | 5-G - the angular momentum
| and the value of its

: | ‘ projection along ONE
Source —— ::‘- ; __§ ‘ i~ ‘ ' :.' ; i | aXiS.

S —




From commutation relationships we can find states which are
eigenstates to L? and L;:

we denote them by ‘l, m>

eigenvalue eigenvalue
of L? of I,

Spectrum of L2

L2|l,m) = B2+ D)|l,m)  1=012,..

Spectrum of L;:

L.|l,m) = hm|l, m)




Advanced topic:
Eigenstates and spectrum of Angular Momentum

To derive the spectrum and to construct the related
eigenfunctions it is useful to introduce spherical
coordinates:
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All differential operators can be expressed in spherical coords. In particular, the
Laplacian reads:
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The quantum angular momentum operator is

L = (—ihV) x

In polar coordinates one finds
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We need to find functions such that

LY (0, 9) = R2l(L+ 1)V (6, ¢)
ﬁ2}ﬁm (9, (b) = ﬁ/ml/lm(ea ¢)

These functions have been found in mathematical physics:
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(SPHERICAL HARMONICS) (Associated Laguerre polynomials)




Advanced topic:
Motion of a quantum particle in a central potential

First review the classical discussion:
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If the potential depends only on r=Irl, then

d
%L(t) =0

The total energy of a particle in a central potential
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H—1m7'°2+V()' 4 1mfr + Vers(r)
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centrifugal energy contribution

repulsive to the effective potential

centrifugal
core

Total Energy

classical inversion points




Quantum Mechanical treatment:

We need to solve the stationary Schrodinger equation:
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V2 +V(r)| ¢(r,0,0) = Eo(r,0, )

Recalling the expression for the Laplacian in polar coords:
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¢(r,0,¢) = Ed(r,0, ¢)




We now make the following ansatz
¢(r,0,9) = R(r) ¥;"(6, ¢)

We obtain a new equation for each different values of | l1!:
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We obtain an equation which is formally analog to 1D Schrodinger equation but with an
effective potential:
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=2 -> d-wave
Complete analogy with classical case!




Electron’s probability density in a hydrogen atom
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Orbitals

Counter-intuitive predictions:

In some excited states, the
electron cannot be found at
certain
distances from the proton




Angular momentum quantization

In electromagnetism, angular momentum is associated to a MAGNETIC MOMENT:

i =pL

Remember the Stern-Gerlach experiment:

Experimental observation:
% Magnetic moment (hence ang. mom.

SIS IS QUANTIZED in
: ¢< integer or half-integer units

of fi

All-up or all-down!




In particular the splitting works as follows:

units of ....no angular momentum....

0

* L=+1/2 h
L=_3/2
* L=t172 f

And so on
: L, is a quantum number




Electrons protons and neutrons have spin 1/2, i.e.
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Non-relativistic spin 1/2 states are conveniently described by 2-dimensional vectors,

called SPINORS
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SPIN-STATISTICS CONNECTION

particles with half-integer spin are called FERMIONS:

(eg: electron, proton, neutron, neutrinos have all spin 1/2)

particles with integer spin are called BOSONS:

(eg: photon (S=1) pion (S=0), Higgs particle (S=0), ...)

FERMIONS and BOSONS behave very differently in quantum

mechanics! Indeed, their wave function is said to obey different
statistics. Let’s see what this is all about




PAULI EXCLUSION'’S PRINCIPLE:

Two Fermions can not occupy the same quantum state

same collection of
quantum numbers

n,m,l,...)

DIRAC NOTATION

(n]Olm) = / iz ¢%(2)Om (@)




SPIN-STATISTICS RELATIONSHIP

Pauli exclusion principle is automatically satisfied if one assumes that the wave function
of identical BOSONS (FERMIONS) is symmetric (anti-symmetric) under exchange of

particles

(21, 22) = £9Y(22, 1)

if both particles are in the same point, xi=x=x,then:

which can be true only if w(l}, SE)

NB: Actually one does not need to assume the above relationship between spin e
symmetry of the wave function. It is a theorem which follows from combining quantum
mechanics with Einstein’s special theory of relativity.




