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Chapter 1

Prologue

1.1 Introduction

These notes provide an introduction to modern theoretical physics methods to de-
scribe the dynamics complex systems. In the following, we shall conventionally
refer to as complex a physical system which displays two main features: (i) it is
composed by a large number of degrees of freedom and (ii) its dynamics is shaped
by the presence of strong correlations and by thermal or quantum fluctuations. Ac-
cording such a working definition, complex systems cannot be described by regarding
their elementary constituents as nearly independent (or weakly interacting) parti-
cles (or fields). Indeed, the interplay between correlations and fluctuations gives
rise to critical phenomena, collective excitations, cooperativity etc.. For this reason,
the theories developed to describe their dynamics make use of concepts and results
of equilibrium and non-equilibrium statistical physics and are often formulated in
terms of the effective (i.e non-fundamental) degrees of freedom, in both particle or
field representation.

While the theories and methods we shall discuss are applicable to a generic
complex system, these notes are conceived with in mind prototypical applications
to soft condensed matter systems, and in particular to biopolymers in solution, such
as proteins and nucleid acids. A brief summary of the basic structural and chemical
properties of these macromolecules is provided in the appendix to these notes.

The present treatment of the dynamics of complex systems is based on four
main concepts and tools: (i) the notion of systematic Effective Theory (ET), (ii)
the path integral formalism, (iii) the concept of stochastic process and (iv) the notion
quantum and statistical fields.

Generally speaking, effective theories (ETs)–for an excellent pedagogical intro-
duction see [16]– are systematic low-resolution approximations of arbitrary more
microscopic theories. Unlike other coarse-graining approaches inspired by heuris-
tic or phenomenological arguments, ETs can be rigorously derived starting from
the underlying microscopic theory within the framework of Renormalization Group
(RG) theory. Under certain well-defined conditions to be discussed in the next sec-
tion, ETs are guaranteed to approximate to any given finite degree of accuracy the
long-distance (or long-time) dynamics.

Functional Calculus has become a standard mathematical language in which
modern quantum and statistical field theories are formulated, even in non-relativistic

7



8 CHAPTER 1. PROLOGUE

regimes [2, 3, 4, 5]. This is because the path integral formalism offers several ad-
vantages with respect to the traditional operator-based one. For example, it allows
to express the quantum dynamics in terms of purely classical concepts, providing a
clean and physically sound framework to explore the transition between quantum
and classical regime of physical systems. It also elucidates the role of fluctuations in
disrupting the deterministic character of classical mechanics, and displays the analo-
gies and the differences between the effect of thermal and quantum fluctuations.
Furthermore, many powerful computational methods routinely used to investigate
quantum or classical many body systems are based on exploiting the connection
between the classical canonical partition function and the imaginary time quantum
mechanical path integral. Finally, path integrals provide the mathematical frame-
work to develop a number of useful approximations.

Stochastic processes are key to describe phenomena in very different fields of
science, economy, and even sociology. The main reason is that a stochastic behavior
emerges any time our description of the dynamics is restricted to a sub-set of degrees
of freedom, which are nonetheless coupled to many others, which we do not explicitly
specify. This situation is often encountered in statistical physics, when coupling the
system of interest to a reservoir.

Finally, the field representation (as opposed to the particle representation) en-
ables one attain a coarser grained representation of the state of a system (based on
global descriptors such as the local density), rather than having to specify the posi-
tion of each particle. Clearly, if the density field varies over length scales which are
sufficiently large, then a field representation can be extremely more ”economical”
than the particle. It may take fewer variables to describe the field configuration
than the 6N phase-space coordinates.

In this Introduction, we first review the standard Feynman path integral rep-
resentation of Quantum Mechanics and the connection between classical statistical
mechanics and imaginary time quantum mechanics. Then, we provide an illustrative
example of a systematic ET, which illustrates the basic ideas behind the renormal-
ization group based coarse graining.

1.2 Path integral Representation of Quantum Mechan-
ics

The equation of motion of quantum states associated to non-relativistic point-
particles is the time-dependent Schrödinger equation:

i~
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ(t)〉. (1.1)

Note that we have denoted explicitly the time dependence of the quantum state
|Ψ〉. This differential equation is linear in time, hence can be formally solved by
specifying the initial state, by introducing the time evolution operator:

|Ψ(t)〉 = e−
i
~ Ĥt |Ψ(0)〉. (1.2)

In particular, if the state is represented by projecting onto the complete basis set
formed by the position eigenstates |x〉, we find:

ψ(x, t) = 〈x|Ψ(t)〉 =

∫
dy〈x|e− i

~ Ĥt |y〉〈y|Ψ(0)〉 =

∫
dy K(x, t; y, 0) ψ(y, 0), (1.3)
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where we have used the resolution of the identity

1 =

∫
dy|y〉〈y|, (1.4)

and we have introduced Feynman propagator:

K(x, t; y) ≡ 〈x|e− i
~ Ĥt |y〉. (1.5)

Hence, solving a quantum system amounts to specifying the initial state and evalu-
ating the propagator.

For sake of simplicity and without loss of generality, we present the derivation
for a quantum particle in one dimension. The generalization to multi-dimensional
systems with local scalar potential is straightforward

Let us now split the time interval t into N equally sized incremental time steps:

∆t = t/N (1.6)

Next, we introduce the so-called Trotter decomposition of the of the evolution op-
erator:

e−
i
~ Ĥt =

(
e−

i
~ Ĥ∆t

)N
= e−

i
~ Ĥ∆t . . . e−

i
~ Ĥ∆t (N times) (1.7)

We plug in this expression into the definition of the propagator and insert a complete
set of position eigenstates between each of the term of this product:

K(xf , t;xi, 0) =

(
N−1∏

l=1

∫
dyl

)
〈xf |e−

i
~ Ĥ∆t|yN−1〉〈yN−1|e−

i
~ Ĥ∆t|yN−1〉 . . .

. . . 〈y1|e−
i
~ Ĥ∆t|xi〉

(1.8)

In the large N limit (i.e. for small ∆t the matrix elements of incremental evolu-
tion propagators can be analytically evaluated. Let us restrict our discussion here
to Hamiltonians which are defined as operational functions of the momentum p̂ and
position x̂ operators in the form1.

Ĥ =
p̂2

2m
+ U(x̂) (1.9)

For sufficiently small ∆t the exponents in the matrix elements

〈yk+1|e−
i
~ Ĥ∆t|yk〉 (1.10)

can be expanded to leading order in ∆t. To enables us to split the exponent as
follows

e−
i
~ Ĥ∆t = e−

i
~ (T̂+Û)∆t = e−

i
~ T̂∆t e−

i
~ Û∆t +O(∆t2) (1.11)

1Some extra care is needed in the case of particles derivatively-coupled to vector potentials. The
interested reader can find a detailed discussion of this problem e.g. in [5]
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We find:

〈yk+1|e−
i
~ Ĥ∆t|yk〉 ' 〈yk+1|e−

i
~ T̂∆t e−

i
~ Û∆t|yk〉

= e−
i
~U(yk)∆t〈yk+1|e−

i
~ T̂∆t|yk〉

= e−
i
~U(yk)∆t

∫
dp

2π
〈yk+1|p〉〈p|e−

i
~ T̂∆t|yk〉

= e−
i
~U(yk)∆t

∫
dp

2π
e
i
~p(yk+1−yk) e−

i
~
p2

2m
∆t

=
( m

2πi~∆t

)1/2
e
i
~
m

2∆t
(yk+1−yk)2

e−
i
~U(yk)∆t. (1.12)

Collecting all of such terms yields the expression

K(xf , t;xi) '
( m

2πi~∆t

)N/2 N∏

l=1

∫
dyl e

i
~
∑
k ∆t

(
m

2∆t2
(yk+1−yk)2−U(yk)

)
, (1.13)

where we have adopted the notation y0 = xi and yN = xf . Note that this expression
is exact in the so-called continuous limit, in which N →∞ while the product ∆t N
is held fixed. This limit is symbolically represented by introducing the functional
integral notation:

( m

2πi~∆t

)N/2 N∏

l=1

∫
dyl →

∫
Dy (1.14)

At the same time, in the continuous limit one can replace sums and discrete differ-
ences with integrals and derivatives.

∑

k

∆t→
∫ t

0
dt (1.15)

(yk+1 − yk)2

∆t2
→ ẏ2. (1.16)

From a mathematical stand-point, this step is quite tricky, because generic paths
yk are, strictly speaking, non-differentiable objects. In fact, the replacement (1.16 )
should be regarded as a notation, rather than a proper mathematical statement.

In the new notation, the exact expression for the propagator becomes:

K(xf , t;xi, 0) =

∫
Dy e i~S[y], (1.17)

where S[y] is a functional which coincides the classical action of the system:

S[y] =

∫ t

0
dt′
(m

2
ẏ2(t′)− U [y(t′)]

)
. (1.18)

which is evaluated along the trajectory y(t′), satisfying the boundary conditions
y(0) = xi and y(t) = xf .

Eq. (1.17) is the famous Feynman path integral representation of the propagator.
We emphasize that, in such an expression, operators and states in Hilbert spaces
have been removed and the quantum mechanics is described entirely in terms of
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complex numbers. One of the main advantages of this mathematical representation
is that the classical limit of quantum mechanics can be recovered by the stationary

phase approximation. To this end we note that the complex phase term e
i
~S[x] is fast

oscillating. This fact tends to suppress the contribution to the total path integral of
all paths x for which S[x] � ~, due to destructive interference. In contrast, paths
in the functional vicinity of the stationary point δS[x] = 0 coherently add. Thus
in the small ~ limit, the path integral can be approximated by a very small bundle
of trajectories focused around the solution x̄(t) of the Euler-Lagrange equation of
motion:

δS[ȳ] = 0→
[
d

dt

∂

∂ẏ
− ∂

∂y

]
L(y, ẏ)

∣∣∣∣
y(t)→ȳ(t)

= 0 (1.19)

We close this section by noting that this correspondence between classical and
quantum mechanics is possible only for bosonic degrees of freedom. For fermions,
it turns out to be impossible to represent a propagator in terms of c-numbers while
preserving Pauli principle. In this case a new algebra (called after Grassmann) has
to be introduced in order to describe a set of numbers with anti-commuting perators.
An important consequence is that no classical limit for fermions can be recovered
in the limit ~→ 0.

1.2.1 Connection between Imaginary Time Quantum Dynamics and
Classical Thermodynamics

In this section, we discuss how the path integral formalism allows to establish impor-
tant mathematical duality between the formalism to describe the dynamics of quan-
tum particles and that describing the thermodynamics in the canonical ensemble.
These connections are very practical tools: indeed, the same techniques developed
to compute quantum mechanical propagators can be exported to evaluate thermal
averages. At the same time, standard approaches for classical thermodynamics (such
as Monte Carlo averages) can be used to compute quantum mechanical observables
(Quantum Monte Carlo).

To establish this mapping we perform the analytic continuation of the Feynman
path integral to the imaginary time axis (the so-called Wick rotation):

t→ −iτ, (1.20)

where τ is a real variable. On the imaginary time axis, the exponent appearing in
the path integral becomes:

i

~
S[y] ≡ i

~

∫ t

0
dt
(m

2
ẏ2 − U(y)

)
→ −1

~
SE [y] ≡ −1

~

∫ t

0
dt
(m

2
ẏ2 + U(y)

)
, (1.21)

which contains the so-called Euclidean action, SE [y] =
∫ t

0 dt
(
m
2 ẏ

2 + U(y)
)
. The

imaginary time path integral is therefore written as follows:

K(x′, t|x)→ ∆(τ) ≡ K(x′,−it|x) =

∫
Dy e− 1

~SE [y]. (1.22)
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It is convenient to return to the discretized form of the imaginary time path
integral:

∆(τ) '
( m

2πi~

)N/2 N∏

l=1

∫
dyl e

− 1
~
∑
k ∆t

(
m

2∆t2
(yk+1−yk)2+U(yk)

)
. (1.23)

We note that this expression is formally equivalent to the classical canonical partition
function of a system of N particles interacting through an effective ”Hamiltonian”

Heff =
∑

k

( m

2∆t
(yk+1 − yk)2 + ∆tU(yk)

)
(1.24)

at an ”effective” temperature ~. Hence, the discretized Euclidean path integral
describing the imaginary time dynamics of a quantum particle is formally analog
to the partition function of a classical virtual “polymer”, with harmonic springs
connecting N beads, one for each different discretization time step. This analogy
is very practical, as it allows to evaluate quantum path integrals using stochastic
methods originally developed to perform classical canonical averages, such as the
Metropolis algorithm

1.3 Systematic Effective Theory

Consider a physical system characterized by a wide gap between characteristic length
(or time) scales. For example, we imagine some short-distance physics to become ev-
ident at some scale λ and we are interested in systematically describing phenomena
which occur at much larger scales, e.g. for distances � λ. Borrowing the termi-
nology form high-energy physics, we shall refer to the physics at scales >∼λ as the
Ultra-Violet (UV) sector and to the physics at the soft-scale � λ as Infra-Red (IR)
sector.

The basic idea behind the Effective Theory (ET) formalism is very familiar: Any
experimental probe with wavelength λ (or frequency ν) is insensitive to the details
of the physics at length-scales � λ. As a consequence of this fact, as long as one
is interested on the IR sector, all the hard-frequency details of a microscopic theory
are irrelevant, and can be accurately mimicked by a set of effective parameters each
multiplying specific operators. The structure of these operators can be deduced
solely by symmetry arguments and dimensional analysis. The effective parameters
multiplying the operators (called the coupling constants) are not predicted by the
RT, but have to be computed from the underlying microscopic theory, or directly
extracted from experimental data. Clearly, ETs are only applicable to physical
systems which display a gap in characteristic scales, i.e. for which it is possible to
separate IR from UV scales.

To illustrate in a practical example how rigorous ET are constructed let us
consider a standard problem of classical electrostatics: how to determine the elec-
trostatic potential produced by some arbitrary charge distribution ρ(r). This is
controlled by the first Maxwell’s equation:

∇2φ(x) = 4πρ(x) (1.25)
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A standard way to solve this problem would of course be to consider the exact
solution

φ(x) =

∫
dr

ρ(r)

|x− r| (1.26)

We emphasize that the solution obtained this way would hold exact at all distances
(at least those at which classical electrodynamics is a viable theory).

We now imagine that in the physical system we are investigating some crucial
simplifications occur. Namely, (i) the charge distribution ρ(r) is appreciably different
from 0 only within a region of finite size ∼ σ (for simplicity we set the origin
of the reference somewhere in the middle of the charge distribution) and (ii) the
electrostatic phenomena we are studying take place far from the charge, i.e. at
distances |x| � σ . The standard theory of classical electromagnetism provides a
technique for computing the solution of Eq. (1.25) under such circumstances: the
multi-pole expansion. This can be readily obtained by expanding the denominator
in Eq. (1.26) for |r− x| � |x|. The first few terms in this expansion are the dipole
and quardupole term, respecitvely:

φ(x) =
Q

|x| +
P · x̂
|x|2 + . . . (1.27)

where

Q =

∫
d3r r ρ(r) (1.28)

P =

∫
d3rr ρ(r) (1.29)

Corrections beyond the dipole term can be added in order to reach any desired finite
accuracy.

We want to revisit this familiar problem in a modern perspective and from a
slightly different standpoint. Rather than stating that we are interested in the
physics at distances much larger than the charge size distribution, we imagine that
this system is experimentally investigated using a probe characterized by wavelength
λ. This sets a limit to the smallest length scale ( or, equivalently, on the largest
momenta pUV ∼ 2π/λ) that are resolved.

We are interested in developing a theory for this system which takes into account
only of the available experimental information and (equally importantly) does not
make any assumption about the physics at scales shorter than λ, for which we have
no experimental information. In particular, this implies accounting for the fact that
we have only limited knowledge about the structure of the charge distribution ρ(x).

Our first step consists in evaluating the Fourier transform of the Maxwell’s equa-
tion:

−k2φ̃(k) = 4π ρ̃(k) ⇒ φ̃(k) = −4πρ̃(k)

k2
(1.30)

A key important point to emphasize is that this expression formally contains in-
formation about Fourier components at arbitrary moment. However, we are assum-
ing that we are probing the charge density distribution with a probe of wavelength
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λ, i.e. up to some finite momentum pUV = 2π
λ . Assuming that Eq. (1.30) holds

true even for momenta larger than this momentum scale corresponds to introducing
unphysical information into our calculation, thus undesired model dependence.

Based on this considerations, we want to exclude from the calculation all modes
with hard momenta from our theoretical models. In practice this is done in practice
by introducing a UV-cutoff which quenches all hard modes. For example, this is
implemented by a Gaussian cut-off:

φ̃(k) = −4πρ̃(k)

k2
→ φ̃λ(k) = −4πρ̃(k)

k2
e−

k2λ2

2 (1.31)

The position dependent solution is obtained from the inverse Fourier Transform of
φ̃λ(x):

φλ(x) = −
∫

d3k

(2π)3

4π

k2
ρλ(k), (1.32)

where

ρ̃λ(k) = e−
k2λ2

2 ρ̃(k) (1.33)

According to the properties of the Fourier Transform, Eq. (1.32) leads to the
convolution of two inverse Fourier transforms:

φ(x) = F−1

[
1

k2

]
? F−1 [ρ̃λ(k)] (1.34)

We find:

F−1

[
− 1

k2

]
≡ =

1

|x| (1.35)

F−1 [ρ̃λ(k)] ≡ ρλ(x) (1.36)

We recall that we are interested in describing the electrostatics in the IR sector,
i.e. at scales much softer than then UV cut-off. Then, we can approximate ρ̃λ(k)
with a Taylor series for small momenta:

ρ̃λ(k) = ρ̃λ(k)|k→0 +∇ρ̃λ(k)|k→0 · k + . . . (1.37)

Now we note:

ρ̃λ(k)|k→0 =

∫
d3rρλ(r) ≡ Qλ

(1.38)

∇ρ̃λ(k)|k→0 = i

∫
d3r r ρλ(r) ≡ iPλ (1.39)

Thus

ρ̃λ(k) = Qλ + iPλ · k + . . . (1.40)

After computing the inverse Fourier Transform we obtain

ρλ(r) = Qλδλ(r) + Pλ · ∇δλ(r) (1.41)
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We note that, for the specific choice of smooth UV cut-off we are adopting, δλ(r)
denotes a Gaussian function of variance λ. For a generic cut-off scheme, δλ(r)
denotes an arbitrary representation of a Dirac-delta, smeared to the scale λ.

Finally we integrate by parts:

φλ(x) =

∫
d3r

1

|x− r| (Qλδλ(r) + Pλ · ∇δλ(r))

=

∫
d3r δλ(r) (Qλ −Pλ · ∇r)

1

|x− r| (1.42)

Thus, performing the integral over d3r we recover the standard multipole expansion

φλ(x) ' Qλ
|x| +

Pλ · x̂
|x|2 + . . . (1.43)

Some comments are in order. First, we emphasize that in this derivation we have
made explicit at each step that we are building a low-energy approximation which
is valid only up to some length scale λ and we made no statement about the physics
above such a scale. For example Pλ is the total electric dipole of the distribution,
measured with a probe with wavelength λ. A variation of this scale: λ→ λ′ = λ+δλ
would result in a small change in the effective coefficients Qλ, Pλ, . . .. This fact is
referred by saying that the effective coefficients ”run with the renormalization scale”.

In the regime of validity of the expansion underlying an ET, predictions can be
made to any desired accuracy, at the price of introducing more and more effective
parameters. These have to be computed from the underlying microscopic theory
or fitted directly to experiment. The need of adding more effective parameters to
increase the theoretical accuracy is referred to by saying that the effective theory is
non-renormalizable.
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Part I

Dynamics in Open Systems
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Chapter 2

Hamiltonian Dynamics

The theoretical description of the physics of complex systems is based on both
equilibrium and non-equilibrium statistical physics.

Examples of a fundamental process which require an out of equilibrium descrip-
tion are conformational reactions, such as e.g. protein or RNA folding. Usually
proteins are produced from RNA in coil configurations, and later reach their ther-
modynamically stable native state by a sequence of conformational changes. The
folded molecule can be artificially driven to denature configurations by means of
denaturants (such as temperature or urea concentration). After the denaturing
conditions have been removed, the proteins spontaneously refold to their original
native state. Clearly, the coil states obtained by means of denaturants are not in the
global minimum of the free energy corresponding to the absence of denaturants. As
a consequence, the protein re-folding reaction is an out-of-equilibrium process and
the calculation of the folding rate clearly requires a non-equilibrium formalism. At
the same time, in ordinary physiological conditions, a small fraction of proteins in
the ensemble undergoes spontaneous unfolding and refolding transitions as a conse-
quence of thermal fluctuations. The general theoretical result which allows to relate
the dynamics of spontaneous unfolding and refolding and re-folding starting from
out-of-equilibrium initial conditions is the so-called Onsager regression hypothesis
(to be discussed below)

For the analysis of the dynamics of many phenomena occurring in complex sys-
tems a classical approach is satisfactory. For example, in describing structural rear-
rangements of macromolecules, quantum effects are in general expected to be small
for most atomic species. On the other hand, the description of chemical reactions
or charge transfer processes obviously requires a fully quantum approach.

In this chapter, we shall review and extend some aspects of equilibrium and
out-of-equilibrium of classical statistical mechanics.

2.1 Statistical Mechanics of Hamiltonian Systems

2.1.1 Dynamics of Phase-Space Distributions

Let us begin our discussion by reviewing the standard notion of statistical ensem-
ble. Let us consider a system made by N particles, and let Γ(t) = (Q(t), P (t))
denote the (time-dependent) phase-space coordinate, i.e. Q = (q1, . . . , qN ) and
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P = (p1, . . . , pN ). The statistical ensemble is defined as the infinite set of macroscop-
ically equivalent realizations of the same physical system, each one corresponding
to a different initial condition (microstate), Γ(0). The ensemble contains an infinite
number of copies of the given system which span the phase space specified by the
macroscopic constraints. Hence, the number of copies in a particular microstate
Γ(t) at time t may be assumed to change smoothly, as a function of Γ. Under such
conditions, it is possible to define a phase-space density distribution f(Γ, t), which
assigns a probability density to each point in phase space:

δn(t) = f(Q,P, t)δPδQ (2.1)

where δn(t) is the fraction of copies which at time t have phase-space coordinates
in the elementary volume dPdQ located at the point (Q,P ).

Let us consider the trajectories which at time t enter a small rectangular volume
element. The fraction of the ensemble which enters the first face normal to the q1

axis is

f(q1, . . . , pN ) q̇1(q1, . . . , pN )δq2 . . . δqNδP. (2.2)

Similarly, the fraction of trajectories leaving through the second face parallel to the
q1 axis is

f(q1 + δq1, . . . , pN , t) q̇1(q1 + δq1, . . . , qN )δq2 . . . δqNδP

=

(
f(q1, . . . , pN , t) +

∂f

∂q1
δq1

) (
q1(q1, . . .) +

∂q̇1

∂q1

)
δPδQ (2.3)

Hence, the change in density n(t) attributed to the flux in the q1 direction is:

d

dt
δn(t)q1 = −

(
q̇1
∂f

∂q1
+ f

∂q̇1

∂q1

)
δPδQ (2.4)

Summing up all coordinate and momentum directions and dividing out the ele-
mentary phase-space volume we obtain:

d

dt

(
δn(P,Q, t)

dQdP

)
=
∂f

∂t

∣∣∣∣
P,Q

= −
N∑

i=1

[
f

(
∂q̇i
∂qi

+
∂ṗi
∂pi

)
+ q̇i

∂f

∂qi
+ ṗi

∂f

∂pi

]

≡ −f ∂

∂Γ
· Γ̇− Γ̇ · ∂f

∂Γ
(2.5)

On the other hand, from the usual differentiation chain rule, allowing for explicit
dependence on time t we have

df

dt
=

∂

∂t
f + Γ̇

∂f

∂Γ
(2.6)

Combining Eq.(2.5) with Eq. (2.6) we arrive to the Liouville’s Eq:

d

dt
f = −f ∂

∂Γ
Γ̇ ≡ −fΛ(Γ) (2.7)

Note that, remarkably, the validity of this Eq. relies only on the assumption
that microstates cannot be created or destroyed, while it does not require that the



2.1. STATISTICAL MECHANICS OF HAMILTONIAN SYSTEMS 21

equations of motion of the system are generated by an Hamiltonian. However, if
the system is Hamiltonian, then one can immediately show that Λ(Γ) = 0:

Λ(Γ) =
∑

i

∂

∂qi
· ∂H
∂pi
− ∂

∂pi
· ∂H
∂qi

= 0. (2.8)

Hence, for an Hamiltonian system, the Liouville’s Eq. takes the simpler form:

df

dt
= 0 (2.9)

2.1.2 Evolution operator formalism in classical dynamics

Let us now restrict to Hamiltonian system and introduce the (f-)Liouvillian operator
iLf defined as:

iLf f ≡
(
∂

∂Γ
· Γ̇ + Γ̇ · ∂

∂Γ

)
f (2.10)

Note that the f-Liouvillian is a function of the initial phase-space coordinate Γ.
Using the Liouvillian operator, the equation of motion of the distribution function
f is formally equivalent to a Schrödinger equation

∂f

∂t
= −iLff (2.11)

We can formally solve the equation of motion in terms of the evolution operator:

f(Γ, t) = e−iLf tf(Γ, 0). (2.12)

Let us now derive the equation of motion for the en arbitrary function B(Γ)
of the phase-space coordinate Γ of the system. In general, we shall refer to such
functions as to phase-variables. Note that, by definition, phase variables depend on
time only implicitly, through the phase-space coordinate Γ. Hence, using the chain
rule for time differentiation, we find:

Ḃ(Γ) = Γ̇ · ∂
∂Γ

B ≡ iLpB(Γ), (2.13)

where the operator iLp is referred to as the phase-variable or p-Liouvillian operator.
As before, we can give a formal solution of the equation of motion of any phase
variable as

B(t) = eiLpt B(0). (2.14)

In general, it is possible to show that the f-Liouvillian is the adjoint of the
p-Liouvillian operator. Such a property follows directly from the identity

∫
dΓf(0)iLpB(Γ) = −

∫
dΓB(Γ)iLff(0), (2.15)

which can be easily proven by integrating by parts the LHS and discarding surface
terms. In addition, we observe that the p-Liouvillian and the f-Liouvillian differ
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for the compression factor Λ(Γ). Hence, for Hamiltonian systems, for which such a
term is identically zero, one has

iLp = iLf ≡ iL (for Hamiltonian systems) (2.16)

and the Liouvillians are Hermitian operators.
In complete analogy with quantum mechanics, it is possible to give two equiva-

lent representations of the dynamics of average phase variables. In the Heisemberg
representation, one chooses the initial vlaue of the phase from an initial distribution
f(Γ) = f(Γ, 0) and consider the evolution of the phase variable B(Γ(t)):

〈B(t)〉H =

∫
dΓB(t)f(Γ) =

∫
dΓ(eiLpB(0))f(Γ) (2.17)

Alternatively, it is possible to consider first the evolution of the density func-
tion from an initial distribution and the average the phase variable over the final
distribution, i.e. the Schrödinger representation:

〈B(t)〉S =

∫
dΓB(Γ)f(Γ, t) =

∫
dΓB(Γ)e−iLf f(Γ, 0) (2.18)

It is possible to show that the two representation are equivalent, i.e. that

〈B(t)〉S = 〈B(t)〉H . (2.19)

Of course, it is also possible to introduce alternative representations of the dy-
namics in which the time dependence is shared by both the phase variable and
density function. This is the analog of the quantum mechanical interaction repre-
sentation.

2.1.3 Dyson Representation of the Propagator

The Dyson representation is a self-consistent Eq. which involves the propagator of
the system. To derive it, we begin by defining the resolvent of the operator e−At

which is defined by its .

GA(s) ≡
∫ ∞

0
dte−At e−st =

1

A+ s
(2.20)

We now apply the general operator Eq.

(A+B)−1 = A−1 −A−1B(A+B)−1 (2.21)

Which leads to

(s+A+B)−1 = (s+A)−1 − (s+A)−1B(s+A+B)−1 (2.22)

Substituting the Laplace integrals for (A+ s)−1 and (A+B+ s)−1 this into this
Eq. we find

∫ ∞

0
dte−ste−(A+B)t =

∫ ∞

0
dte−st

(
e−At −

∫ t

0
dt1e

−At1Be−(A+B)(t−t1)

)
(2.23)
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Since this Eq. must hold for every time t the equality extends to the integrands and
leads to:

e−(A+B)t = e−At −
∫ t

0
dt1e

−At1Be−(A+B)(t−t1) (2.24)

Similarly, we can define an analog Eq. for the backwards propagator

e(A+B)t = eAt +

∫ t

0
dt1e

At1Be(A+B)(t−t1) (2.25)

This is the Dyson representation, which relates the propagator defined by the A
and B operators.

2.2 Equilibrium Time Correlation Functions

We define an equilibrium distribution function f0 as one which satisfies the Liou-
ville’s equation in the form:

∂

∂t
f0 = −iLff0 = 0. (2.26)

This condition implies that the equilibrium average of any phase variable is a sta-
tionary quantity:

d

dt
〈B(t)〉0 =

d

dt

∫
dΓf0(Γ)eiLptB(Γ, 0)

=

∫
dΓf0(Γ)iLpe

iLptB(Γ, 0)

= −
∫
dΓ(iLff0(Γ))eiLptB(Γ, 0) = 0 (2.27)

where we have used the relationship between p- and f- Liouvillian operators.
We define the equilibrium time correlation function of two phase variables A and

B as

CAB(t) ≡
∫
dΓ f0(Γ) B∗(Γ, 0)eiLptA(Γ, 0) = 〈A(t)B∗(0)〉0 (2.28)

After some straightforward manipulation, one arrives at the intuitive relation:

CAB(t) =

∫
dΓf0(Γ)A(t1 + t)B∗(t1), (2.29)

where t1 is some arbitrary instant. Note that this is true only if the average is
performed over equilibrium distributions. Using the time-translation invariance of
the distribution function, one can show that

CAB(t) = 〈A(t)B∗(0)〉0 = 〈A(0)B∗(−t)〉0 (2.30)

Finally, we observe that

C∗AB(t) = 〈A∗(0)B(−t)〉0 = CBA(−t). (2.31)
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One can use the autocorrelation function of a phase variable A to define a norm
in Liouville’s space:

||A||2 ≡
∫
dΓf0(Γ)A(Γ)A∗(Γ) =

∫
dΓf0(Γ)|A(Γ)|2 ≥ 0 (2.32)

If the Liouvillian operator is Hermitian, the evolution operator eiLt is unitary
and the norm is preserved

||A(t)||2 = ||A(0)||2. (2.33)

2.3 Relating Equilibrium and Non-Equilibrium Fluctu-
ations: The Regression Hypothesis

The goal of this section is to introduce Lars Onsager’s regression hypothesis, a con-
sequence of the fluctuation-dissipation theorem1. Here, we derive the regression
hypothesis from the principles of statistical mechanics. The regression hypothesis
states that the regression of microscopic thermal fluctuations at equilib-
rium follows the macroscopic law of relaxation of small non-equilibrium
disturbances 2.

In order to understand this hypothesis, consider an observable A for a system at
thermal equilibrium. Such property fluctuates in time with spontaneous microscopic
fluctuations:

δA(t) ≡ A(t)− 〈A〉, (2.34)

Here, is the instantaneous value of the observable and is the equilibrium ensemble
average

〈A〉 =
Tr A(t) e−βH0

Tr e−βH0
(2.35)

The average correlation between an instantaneous fluctuations of A at time t
and an instantaneous fluctuation of A at time zero is described by the correlation
function

C(t) = 〈δA(t)δA(0)〉 = 〈A(t)A(0)〉 − 〈A2〉 (2.36)

At short time δA(t) and δA(0) are completely correlated:

lim
t→0

C(t) 6= 0 (2.37)

At large times δA(t) and δA(0) decorrelate and C(t) vanishes, i.e.

lim
t→∞

C(t) = 0 (2.38)

This is the regression of microscopic thermal fluctuations which is referred in the
Onsager’s hypothesis. Hence, Onsager’s regression hypothesis can be formulated as
follows

A(t)− 〈A〉
A(0)− 〈A〉 =

〈δA(t)δA(0)〉
〈(δA(0))2〉 (2.39)

1H. B Callen and T. A. Welton, Phys. Rev. 83, 34 (1951)
2L. Onsager, Phys. Rev.37, 405 (1931); 38, 2265 (1931))
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In this Eq. A(t) describes the macroscopic relaxation of the observable towards its
equilibrium value while the system evolves from an initial state that is not far from
equilibrium to its final state in equilibrium with a thermal reservoir.

In order to derive Eq.(2.39) from the postulates of statistical mechanics, consider
preparing the system in a state that is not far from equilibrium by applying to the
system a weak perturbational field f (e.g., an electric field) that couples to the
dynamical variable (e.g., the instantaneous total dipole moment). The external
field is assumed to be so weak that the perturbation Hamiltonian ∆H, written as
an expansion in powers of f , can be approximated to be first order in the field as
follows,

∆H = −fA(0) (2.40)

Assume that the perturbation was applied until the system is equilibrated according
to the total Hamiltonian

H = H0 + ∆H (2.41)

The macroscopic relaxation of the system is analyzed by switching off the exter-
nal perturbational field and computing the evolution of the non-equilibrium ensem-
ble average

A(t) =
Tr A(t)e−β(H0+∆H)

Tr e−β(H0+∆H)
(2.42)

The ensemble average is as usually defined by considering equivalent copies of ini-
tial conditions. Consequently, A(t) is a time-dependent average, because the dis-
tribution of initial condition in not the equilibrium generated by the unperturbed
Hamiltonian. Expanding in β∆H we have

A(t) ∼ Tr A(t)(1− β∆H) + . . .)e−β(H0)

Tr (1− β∆H) + . . .)e−β(H0+∆H)

=
〈A(t)〉

1− β〈∆H〉 − β
〈∆HA(t)〉
1− β〈∆H〉 (2.43)

Further expanding in ∆H we find:

A(t) ' 〈A〉 − β(〈∆HA(t)〉 − 〈∆H〉) +O(∆H2) (2.44)

If we now use the assumption (2.40) and take the ratio, we obtain (2.39). Hence,
the kinetic of approach to thermal equilibrium of a system which has been set out
of equilibrium by a small perturbation is equivalent to the kinetics of return to
equilibrium of small spontaneous fluctuations. The consequence is deep: we can
study the transitions which occur at equilibrium by slightly perturbing the system
out of equilibrium and following the regression to thermal equilibrium.
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Chapter 3

Stochastic Dynamics

This chapter is devoted to a non-relativistic discussion of the dynamics of open
systems, i.e. systems coupled to an environment, or heat-bath. Examples of open
classical and quantum open systems are ubiquitus in physics. In particular, the
classical description these systems is the key to understand the behaviour in time
of soft-condensed and biological matter. A quantum treatment of quantum systems
is crucial to explore the physical implications of fundamental concepts of quantum
mechanics, such as measurement and decoherence. being extensively studied, e.g.
with cold-atoms.

The dynamics of open systems is shaped by irreversible phenomena, such as
e.g. thermalisation. In order to analyse how irreversibility emerges starting from a
microscopic, symplectic Hamiltonians we exploit the effective theory approach.

3.1 Classical Open Systems

In the next few section, we shall assume Hamilton’s equation and show how, by
systematically integrating out the dynamics of the fast (ultra-violet, UV) degrees
of freedom from the phase-space, it is possible to generate a low-resolution effective
theory for the remaining slow degrees of freedom. The loss of information resulting
from integrating out part of the phase space is reflected by the fact that the re-
sulting low-energy dynamics is non-deterministic, i.e. stochastic. Furthermore, this
procedure elucidates the origin of irreversibility, i.e. explain why the time-reversal
invariance of symplectic systems is effectively broken, giving raise to irreversible
phenomena such as equilibration.

Let us begin our discussion by reviewing some very basic notions of analytic
mechanics and statistical physics. We consider a system made by N particles, and
we let Γ(t) = (Q(t), P (t)) denote the (time-dependent) phase-space coordinate, i.e.
Q = (q1, . . . , qN ) and P = (p1, . . . , pN ).

We shall assume that the evolution of the phase-space variable is set by Hamil-
ton’s equations:

q̇i =
∂H

∂pi

ṗi = −∂H
∂qi

(3.1)

27
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where H = H(Γ) is the system’s Hamiltonian.
Given an initial condition Γ(0) = Γ0, the system spontaneously evolves according

to this set of equations. Thus, at any time t, the state of this physical system is
entirely determined by its phase-space coordinate Γ(t).

In practice, the initial configuration of the system Γ0 can never be determined
with an infinite accuracy. Furthermore, for sufficiently complex systems the resulting
dynamics is chaotic. As a result, even if we were able to solve the equation of
motion with arbitrary accuracy, we would not be able to completely determine the
configuration at time t.

This “no-go” statement sets the stage for the development of classical mechanics,
which is based on Gibb’s notion of statistical ensemble. This is defined as the infinite
set of macroscopically equivalent realizations of the same physical system, each
one corresponding to a different initial condition (microstate), Γ(0). The ensemble
contains an infinite number of copies of the given system which span the phase space
specified by the macroscopic constraints. Hence, the number of copies in a particular
microstate Γ(t) at time t may be assumed to change smoothly, as a function of Γ.

Under such conditions, it is possible to define a phase-space density distribution
P (Γ, t), which assigns a probability density to each point in phase space:

δn(Γ, t) = P (Γ, t)δΓ (3.2)

where δn(Γ, t) is the fraction of copies which at time t have phase-space coordinates
in the elementary volume dΓ centered at the phase-space point Γ.

The general equation governing the change in time of the phase space density
distribution is the well known Liouville’s equation:

d

dt
P = −P ∂

∂Γ
Γ̇ ≡ −PΛ(Γ) (3.3)

Remarkably, the validity of this equation relies only on the assumption that mi-
crostates cannot be created or destroyed, while it does not require that the equa-
tions of motion of the system are generated by an Hamiltonian. However, if the
system is indeed Hamiltonian, then one can immediately show that the term on the
right-hand-side is Λ(Γ) = 0:

Λ(Γ) =
∑

i

∂

∂qi
· ∂H
∂pi
− ∂

∂pi
· ∂H
∂qi

= 0. (3.4)

Hence, for an Hamiltonian system, the Liouville’s Eq. takes the simpler form:

dP (Γ, t)

dt
= 0. (3.5)

3.1.1 From Hamiltonian to Stochastic Dynamics

We now specialise on physical systems which display a gap in the characteristic
frequency scales, i.e. a decoupling between fast and slow degrees of freedom. The
purpose of this section is to show that, in this case, once the fast degrees of freedom
have been integrated out from the phase-space, the equations of motion for the slow
degrees of freedom acquire dissipative and stochastic terms which are associated to
irreversibility.
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The mathematical procedure which implements this program is known in the
statistical mechanics literature as the Mori-Zwanzing projection formalism and is
applicable to arbitrary hamiltonian systems. Unfortunately, its generality comes at
the prize of not being very physically transparent, a feature which has significantly
limited its practical applications. Thus, for sake of clarity, here we choose to spe-
cialize on the case in which the fast degrees of freedom in the system are represented
by an infinite collection (or “bath”) of harmonic oscillators, linearly coupled to the
low-energy degrees of freedom (classical Caldeira-Laggett model). In this case, the
Mori-Zwanzig formalism becomes much simpler and, most importantly, much more
physically transparent, to a point that the physical origin of the stochastic behavior
becomes evident. At a first sight, the choice of specialising on a bath made of har-
monic oscillator models may be considered somewhat artificial or restrictive. On the
other hand, as long as we are not interested in the dynamics of the environment, all
we need to know are the characteristic time scales associated to the response of the
heat-bath to changes in the system, i.e. the intrinsic memory effects. These physical
scales can be tuned by an appropriate choice of the spectrum of frequencies ωα and
of the associated coefficients cα. Indeed we recall that the low-energy dynamics of
the system is expected to be insensitive to the details of the high energy physics.

For sake of simplicity, and without loss of generality, we consider the case in
which there is a single slow-degree of freedom in the system. Generalisation to the
multi-dimensional case is straightforward. The Hamiltonian reads (Zwanzig 1973,
Ford and Kac 1987, Pollack 1986):

H =
p2

2m
+ U(x) +

∑

α

[
p2
α

2µα
+
µαω

2
α

2

(
qα −

cα
µαω2

α

x

)2
]

(3.6)

The corresponding Hamilton equations for the low-energy variable (which we shall
refer to as system’s variables) are:

ẋ =
p

m
(3.7)

ṗ = − ∂

∂x
U(x) +

∑

α

cα

(
qα −

cα
µαω2

α

x

)
(3.8)

while for the bath variables we obtain:

q̇α =
pα
µα

(3.9)

ṗα = −µαω2
αqα + cαx (3.10)

The next step consists in integrating out the bath degrees of freedom. To this
end we need to solve Newton’s equation for bath variables, i.e. a set of ordinary
inhomogeneous second order differential equations. This this goal, we need to sum
the general solution of the associated homogeneous equation, to a special solution
of the inhomogeneous equation. Finding the general solution of the homogeneous
equation is straightforward and gives:

qα(t) = qα(t0) cos(ωα(t− t0)) +
pα(t0)

µα
sin(ωα(t− t0)) (3.11)
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In order to provide a special solution of the inhomogeneous equation it is conve-
nient to resort on the Green’s function method. Regarding x(τ) as a given function
we write

µα∂
2
t qα(t) = −µαω2

αqα + cαx(τ) (3.12)

After transforming to Fourier space:

−ω2µαq̃α(ω) + µαω
2
αq̃α(ω) = cαx̃(ω) (3.13)

Thus

q̃α(ω) =
cαx̃(ω)

µα(ω2
α − ω2)

(3.14)

Transforming back to time representation

qα(t) =
cα
µα

∫ ∞

t0

dτK(t− τ) x(τ) (3.15)

where the lower bound comes from the initial condition. The Green’s function reads

K(t− τ) =

∫
dω

2π

e−iω(t−τ)

(−ω2 + ω2
α + iε)

= θ(t− τ)
1

ωα
sin(ωα(t− τ)) (3.16)

We emphasise that the Fourier transform is supplemented by a ”iε” prescription to
enforce causality. This is done as usual by excluding the contribution from the pole
that describes to propagation for t− τ < 0.

The complete solution is then

qα(t) = qα(t0) cos(ωα(t− t0)) +
pα(t0)

µα
sin(ωα(t− t0))

+
cα

µαωα

∫ t

t0

dτ x(τ) sin(ωα(t− τ)) (3.17)

Plugging this back into the equation of motion for the slow variables yields

ṗ = − ∂

∂x
U(x)−

∑

α

c2
α

µαω2
α

x(t)

+
∑

α

c2
α

µαω2
α

∫ t

t0

ds ωα sin [ωα(t− s)] x(s)

+
∑

α

cα

[
qα(t0) cos [(ωα(t− t0)] +

pα(0)

µαωα
sin [ωα(t− t0)]

]
(3.18)

The last term will be denoted with F (t) and defines a fluctuating force. Second and
last term can be combined to give:

ṗ = − ∂

∂x
U(x) +

∑

α

c2
α

µαω2
α

[∫ t

t0

ds x(s)
∂

∂s
cos(ωα(t− s))− x(t)

]
+ F (t)

(3.19)
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Finally, after integrating by parts the second term we obtain the so-called generalized
Langevin equation:

ṗ = − ∂

∂x
U(x)− M

2

∫ t

t0

dsk(t− s)ẋ(s) + ξ(t) (3.20)

where

k(t− s) =
∑

α

2c2
α

Mµαω2
α

cos [ωα(t− s)] (3.21)

ξ(t) =
∑

α

cα

[(
qα(0)− cα

µαω2
α

x(t0)

)
cos [(ωα(t− t0)] +

pα(0)

µαωα
sin [ωα(t− t0)]

]

(3.22)

Where

ξ(t) = F (t)−Mk(t− t0)x(t0). (3.23)

Eq. (3.20) is one of the fundamental results in the theory of open classical sys-
tems. It is basically a Newton’s equation, in which the two additional terms describe
the effective forces introduced by the coupling of the system to the environment.

In particular, the term −
∫ t
t0
dsMk(t− s)ẋ(s) introduces an effective dissipative

friction. The so-called memory kernel k(t − s) encodes the information about the
characteristic time scales at which the environment absorbs the energy provided by
the system’s propagation. In the spirit of effective theory, we shall assume that the
environment dynamics is much faster than that of the system, i.e that the Fourier
transform of the system variable x̃(ω) is dominated by components with frequency
much smaller than the frequency range where the spectral function of the heat-bath

k̃(ω) =
∑

α

2cα
Mµαω2

α

(δ(ω − ωα) + δ(ω + ωα)) (3.24)

is peaked. In this limit, several simplification occurs. Firstly γ(t − t′) can be
expanded as follows

k(t− s) = c0δ(t− s) + . . . (3.25)

where . . . denotes terms proportional to derivatives of delta-functions. In particular,
we consider here the so-called Ohmic limit, in which only the lowest-order term is
retained in this expansion. In this limit, the time scale it takes the oscillators to
thermalize around a given system configuration is instantaneous, thus

k(t− s) ' 2γ δ(t− s) (3.26)

Once the Ohmic limit is applied to the generalized Langevin equation one recovers
what in the literature is known simply as the Langevin Equation:

ṗ = − ∂

∂x
U(x)−Mγẋ(s) + ξ(t) (3.27)

The fluctuating force ξ(t) describes the effects of the “kicks” provided by the
environment on the system. We emphasize that this term does not depend on the
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instantaneous configuration x(t) but only on the initial system position x(t0) = x0

and on the initial heat bath configurations and momenta qα(0) = q0
α and pα(0) = p0

α,
which are unknown. Furthermore, in the Ohmic limit, the second term in the right-
hand-side of Eq. (3.23) vanishes for any finite time and can be dropped. In the
lack of complete information on the initial condition, ξ(t) must be regarded as a
stochastic variable.

In order to determine the first moments of its distribution, we take the ther-
modynamic limit (large number of oscillators) and assume that the initial variables
qα(t0) and pα(t0) can be considered to be distributed according to the canonical
Boltzmann’s distribution:

ρeq(pα(t0), qα(t0)|x(t0)) =
1

Z
e
− 1
kBT

∑
α

[
p2α(t0)

µα
+ 1

2
µαω2

α

(
q2
α(t0)− cα

µαωα
x(t0)

)]
. (3.28)

Then, the mean value and time auto-correlation function of the stochastic force can
be computed by performing averages over the equilibrium Boltzmann distribution.
The result is

〈ξ(t)〉 = 0 (3.29)

〈ξ(t+ t0)ξ(t0)〉 = 2 kBTMγδ(t) (3.30)

This result is referred in the literature as the fluctuation-dissipation theorem. It
establishes a highly non-trivial relationship between the energy which is provided
by the environment to the system by the stochastic force and the energy which is
dissipated. Below we shall show that this fine energetic balance is responsible for
the fact that the system eventually reaches thermal equilibrium with its heat-bath.

We derived the Langevin equation 3.27 by exploiting the decoupling of intrinsic
time scales associated to the system and heat-bath dynamics. We now take this idea
even further and consider a limit in which the dynamics of the system is so slow
that its characteristic frequency scales are such that γ/ω � 1. To monitor what
happens to the Langevin dynamics, let’s transform equation (3.27) to Fourier space:

−Mω2x̃(ω) =

∫ t

0
dτe−iωt

∂

∂x
U(x) + iωγx̃(ω) + ξ̃(ω) (3.31)

If we multiply both sides by 1/γ we realize that the inertial term in the left-hand-
side contains a factor ω

γ � 1 and can be neglected. Returning to time representation
we obtain the so-called over damped Langevin equation:

ẋ = − D

kBT

∂

∂x
U(x) + η(t) (3.32)

where D = kBT
Mγ is called the diffusion coefficient and η(t) is a rescaled stochastic

force, which obeys the fluctuation-dissipation relationship:

〈η(t)〉 = 0 (3.33)

〈η(t)η(t0)〉 = 2D δ(t− t0) (3.34)
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3.1.2 Aspects of Stochastic Calculus

From a mathematical standpoint the Langevin equations (3.27) and (3.32) are quite
puzzling. For example, on the one hand, the left-hand side of equation (3.32) con-
tains a time derivative. On the other hand, the right-hand side contains the stochas-
tic force which is delta-correlated, thus discontinuous for any t.

The mathematician’s way to go around this problem is to abandon Rieman’s
calculus and introduce new definitions of integral and derivative, which are tailored
for the description of stochastic processes ( stochastic calculus ). From a physical
point of view, and in particular from a renormalisation group perspective, these
mathematical issues are associated with the fact that Langevin equations define an
effective theory. As such, they are only supposed to provide a description of the slow
dynamics, i.e. to be meaningful and applicable for times much longer than an ultra-
violet cut-off scale ∆t and to be meaningless beyond such a scale. Consequently, the
delta-function appearing in the stochastic force auto-correlation function needs to
be smeared to acquire a width of order ∆t (see also the discussion of renormalization
in Lepage’s lectures [16]).

In practice, the constraint set by the effective theory is implemented by stating
that Eq. (3.32) is equivalent to the following stochastic process:

x(t+ ∆t) = x(t)− D∆t

kBT

∂

∂t
U [x(t)] +

∫ ti+∆t

ti

η(τ)dτ, (3.35)

while no statement made can be made for time intervals smaller than ∆t. Equation
(3.35) is completely general, but does not yet define the stochastic derivative. To
this end, we need to specify the convention used to define the discretization of the
derivate and when the stochastic variable is sampled, i.e. to provide a rule on
how to compute the integral in the right hand side. For example, in the so-called
Ito Calculus, the first order stochastic differential equation (3.35) is defined by the
following rule:

x(t+ ∆t) = x(t)− D∆t

kBT
∇U [x(t)] + η(t)∆t (3.36)

where η(t) is a random number sampled from a distribution which obeys then

〈η(t)〉 = 0 (3.37)

〈η(ti)η(tj)〉 =
2D

∆t
δij (3.38)

Notice that δij/∆t provides a representation of delta-function δ(t− t′), smeared at
the UV cut-off time scale ∆t.

It is convenient to absorb the 1/∆t factor into the definition of the stochas-
tic variable: W (t) ≡ η(t)∆t. Then the probability distribution for the stochastic
displacements W (t) obeys

〈W (t)〉 = 0 (3.39)

〈W (ti)W (tj)〉 = 2D∆t δij (3.40)

The simplest choice of distribution which satisfies these relationships is a Gaussian
of variance

√
2D∆t:

P[W ] =
1√

4πD∆t
e−

W2

4D∆t (3.41)
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An alternative choice of discretization of the over damped Langevin equation
follows the so-called Stratonovich convention:

x(t+ ∆t) = x(t)− D∆t

kBT

1

2
∇ (U [x(t)] + U [x(t+ ∆t)]) +W (t) (3.42)

So far we discussed the notion of stochastic derivative. It is useful to define also
the stochastic generalization of integration. Given a time series {xk}k the so-called
Ito-Integral is defined as follows

(I)

∫ xf

x0

dxf(x) ≡ lim
∆t→0
N→∞

N−1∑

k=0

(x(tk+1)− x(tk)) f(xk). (3.43)

A similar expression exists for the Stratonovich definition.
Interestingly, the fundamental theorem of Calculus can been shown to lead to

different relationships, depending on the specific choice of discretisation conven-
tion. In particular, Ito integrals of derivatives can be shown to obey the modified
relationship:

(I)

∫ xf

x0

dxf ′(x) = f(xf )− f(xi)−D
∫ t

0
dsf ′′[x(s)] (3.44)

where x(t) = xf and x(t0) = xi and the last term denotes a standard (i.e. Riemann)
integral and the path x(s) is obeys the boundary values x(s = 0) = x0, x(t) = xf .
It is important to empasize that this results holds in the probabilistic sense, i.e.
after averaging over many independent stochastic processes. In contrast, in the
Stratonovich convention, the fundamental theorem of calculus coincides with that
of Riemann’s Calculus.

(S)

∫ xf

x0

dxf ′(x) = f(xf )− f(xi) (3.45)

From this point on we shall assume the Ito convention, which has the advantage
of defining a Markov process and thus is most commonly adopted in numerical
simulations.

3.2 Mori-Zwanzig Projection Formalism

In this section we analyze the derivation of stochastic dynamics from an underlying
Hamiltonian dynamics from a more general and formal standpoint, by illustrating
the Mori-Zwanzig projection formalism. The goal is to derive the dynamics of
an arbitrary function of the phase variable A(Γ), for system evolving under Eq.s
of motion which preserve the equilibrium distribution function. The fundamental
result of Mori-Zwanzig Theory (MZT) is that the phase variable obeys a generalized
Langevin equation. For this reason, we shall refer to A as to the Langevin (phase)
variable.

For sake of definiteness, we shall focus on the case in which the equilibrium
distribution is the canonical distribution:

fc(Γ) =
e−βH(Γ)

∫
dΓe−βH(Γ)

(3.46)
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However, one should bare in mind that MZT holds for arbitrary equilibrium distri-
butions (e.g. micro-canonical).

The starting point consists in defining a Hilbert space spanned by the phase
variables, and equipped with an bilinear operator:

(V1, V2) ≡
∫
dΓV1(Γ) V2(Γ)fc(Γ). (3.47)

Note that the inner product (A∗(Γ), B(Γ, t)) defines the equilibrium time corre-
lation function between the phase variable B and the Langevin variable A:

CBA(t) =

∫
dΓB(Γ, t)A∗(Γ)fc(Γ) = (B(Γ, t), A∗(Γ)) (3.48)

Using the above inner product it is possible to define an operator Q̂ which
selects the ”component” of any phase variable B which has no correlation with the
Langevin variable A. To this end, we first introduce the projection operator P̂ ,
defined as follows

P̂B(Γ, t) ≡ (B(Γ, t), A∗(Γ))

(A(Γ), A∗(Γ))
A(Γ) (3.49)

The operator Q̂ is then defined as the complement of P . i.e.

Q̂ = 1− P̂ (3.50)

It is immediate to show that Q̂B is the component of B which is uncorrelated (i.e.
random) with respect to A:

CQ̂B,A(t) = (Q̂B(Γ, t), A∗(Γ)) = 0. (3.51)

It is possible to show that both P and Q are Hermitian and nilpotent (P̂ P̂ = P̂ ,
Q̂Q̂ = Q̂) and that P̂ Q̂ = Q̂P̂ = 0. Note that the propagator eiQL generates a
dynamics which is uncorrelated to the Langevin variable A. For this reason it is
called the random propagator.

The rate of change of the Langevin variable A with time is given by:

d

dt
A(t) = iLeiLtA(0) = eiLt(Q+ P )iLA(0), (3.52)

Now we recall the definition of the projection operator P and find:

eiLt P iLA(0) = eiLt
(iLA,A∗)

(A,A∗)
A(0) =

(iLA(0), A∗)

(A,A∗)
eiLt A(0) ≡ iΩA(t), (3.53)

Note that the quantity

iΩ =
(iLA,A∗)

(A,A∗)
(3.54)

has the dimension of a frequency and represents an equilibrium property of the
system. Substituting this result into (3.52) we find:

d

dt
A(t) = iΩA(t) + eiLtQiLA(0), (3.55)
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To derive the generalized Langevin Eq., we now consider the Dyson representation
(2.25) where the operator A is iQL and the operator B is iPL:

eiLt = e(QiL+PiL)t = eQiLt +

∫ t

0
dτeQILτPiLe(QiL+PiL)(t−τ) (3.56)

= eQiLt +

∫ t

0
dτ eQiLτP iL eiL(t−τ) (3.57)

(t1≡t−τ)
= eQiLt +

∫ t

0
dt1 e

QiL(t−t1)P iL eiLt1 . (3.58)

Hence, we find

d

dt
A(t) = iΩA(t) +

∫ t

0
dt1 e

QiL(t−t1)P iL eiLt1 Q iL A(0) + eQiLtQiLA(0). (3.59)

The quantity

F (t) = eQiLtQiLA(0) (3.60)

can be identified as a random force, i.e. a force uncorrelated to the dynamics of the
Langevin phase variable A. In fact, the time correlation function of F (t) with A is

(F (t), A∗) = (eQiLtQiLA,A∗) = (eQiLtQQiLA,A∗) = (QF (t), A∗) = 0. (3.61)

We stress the fact that the evolution from F (0) to F (t) is generated by the random
propagator. Using the hermiticity of L and Q one finds:

P iL eiQLtQiLA(0) = −(F (t), (QiLA)∗)

(A,A∗)
A(0) = −(F (t), (F (0))∗)

(A,A∗)
A(0). (3.62)

We now introduce a memory kernel for the random force, defined as:

K(t) ≡ (F (t), (F (0))∗)

(A,A∗)
(3.63)

So we finally find:

d

dt
A(t) = iΩA(t)−

∫ t

0
dτeiL(t−τ)K(τ)A(0) + F (t) (3.64)

= iΩA(t)−
∫ t

0
dτK(τ)A(t− τ) + F (t). (3.65)

Hence, we have shown that the Langevin phase variable A obeys a generalized
Langevin Eq. with a memory kernel.

3.2.1 Stochastic Path Integral

The Markov process defined by the Ito discretisation provides a simple procedure
to integrate the overdamped Langevin equation: At each time-step one samples a
stochastic displacement Wi from Eq.(3.41) and then sums the deterministic drift
force −D∆t

kBT
∂
∂tU [x(t)]. This procedure generates stochastically trajectories in config-

uration space, which physically represent the Brownian trajectories of the system
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under the influence of the drifting force and of multiple and uncorrelated collisions
with the environment. Our goal is to compute the probability density that the sys-
tem initially prepared in configuration xi at time t0 reaches configuration x at time
tN

To this goal, we note that any given trajectory in configuration space generated
by the Markov process (3.36), x(t0) → x(t1) → x(t2) → . . . → x(tN−1), is uniquely
by the time series of random displacement, W (t0)→W (t1)→W (t2)→ . . .W (tN−1)
which are sampled from the Gaussian distribution in the N integration steps. The
probability of realising such a sequence of random displacements is given by the
product of Gaussians:

P[W (t0)→ . . .→WN−1] =

(
1√

4πD∆t

)N−1 N−1∏

k=0

e−
W2
k

4D∆t (3.66)

To compute the probability of the corresponding trajectory in configuration space
we can use Eq. (3.36) to relate each Wk to a displacement in configuration space
x(tk+1)− x(tk):

P[x(t0)→ . . .→ xN−1] =

(
1√

4πD∆t

)N−1

e
− 1

4D∆t

∑N−1
k=0

(
x(tk+1)−x(tk)+D∆t

kBT
∇U [x(tk)]

)2

J

[
∂W

∂x

]
,

(3.67)

In this equation J
[
∂W
∂x

]
schematically represents the Jacobian of the transformation

from the W to the x variables. It is straightforward to show (see e.g. [9]) that it is
trivially a constant,

J

[
∂W

∂x

]
=

[
KBT

D∆t

]N−1

. (3.68)

Finally, the conditional probability density P (xf , t|x0) of observing the particle
in some final location xf after time t = ∆tN is obtained integrating Eq. (3.67) over
all the undetermined intermediate positions:

P (xf , t|x0) = N
∫ [N−1∏

k=1

dxk

]
e
− 1

4D∆t

∑N−1
k=0

(
x(tk+1)−x(tk)+D∆t

kBT
∇U [x(tk)]

)2

(3.69)

where N is an irrelevant normalisation constant. The multi-dimensional integration∫ [∏N−1
k=1 dxk

]
is usually represented with the symbol

∫
Dx(τ). It represents an

integral over all paths the system can take to go from x0 to xf and for this reason it
is is called the stochastic path integral. After restoring the continuous notation to
represent the term at the exponent, we conditional probability is written as follows:

P (xf , t|x0) = N
∫
Dxe−

1
4D

∫ t
t0
dτ
(
ẋ(τ)+ D

kBT
∇U [x(τ)]

)2

(3.70)

where the functional in the exponent:

SOM [x] =
1

4D

∫ t

t0

dτ

(
ẋ(τ) +

D

kBT

∂

∂t
U [x(τ)]

)2

(3.71)
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is called the Onsager-Machlup functional. We emphasize however that the functional
measure symbols and the continuos integrals and derivatives entering SOM [x] are
just a convenient symbolic way to represent the multi-dimensional integral (3.69).

There is an equivalent representation of the Onsager-Machlup (3.71) which will
be used in the following chapters to discuss the analogy and differences between
stochastic diffusion and quantum delocalisation. To obtain such a representation we
expand the square:

SOM [x] =
1

4D∆t

N−1∑

k=0

(
x(tk+1)− x(tk) +

D∆t

kBT
∇U [x(tk)]

)2

= ∆t
N−1∑

k=0

[
1

4D

(
x(tk+1)− x(tk)

∆t

)2

+
D

4(kBT )2
|∇U [x(tk)]|2

]
+

− 1

2kBT

N−1∑

k=0

(x(tk+1)− x(tk))∇U [x(tk)] (3.72)

Taking the limit ∆t→ 0, N →∞ and using the fundamental theorem of Ito Calculus
(3.43) the last term can be re-written as follows

lim
∆t→0
N→∞

1

2kBT

N−1∑

k=0

(x(tk+1)− x(tk))∇U [x(tk)]

=
1

2kBT
(U(xf )− U(xi))−

1

2Mγ

∫ t

t0

ds∇2U [x(s)] (3.73)

Combining these expressions and restoring the continuous notation, the stochastic
path integral expressing the conditional probability P (xf , t|x0) reads

P (xf , t|x0) = N e
− 1

2kBT
(U(xf )−U(xi))

∫
Dx e−

1
4D

∫ t
t0
dτ( 1

4D
ẋ2+Veff (x)) (3.74)

where

Veff (x) =
D

4(kBT )2

(
|∇U |2 − 2kBT∇2U(x)

)
(3.75)

The path integral representation of the conditional probability (3.70) can be
obtained also in the underdamped limit (a detailed derivation can be found e.g. in
the appendix of [22]). The result is

P (xf , t|x0) = N
∫ xf

x0

Dxe−
β

4Mγ

∫ t
t0
dτ(Mẍ(τ)+Mγẋ(τ)+∇U [x(τ)])2

(3.76)

3.2.2 Smoluchowki-Fokker-Planck Equation

In the previous subsections we have computed the conditional probability P (xf , t|x0).
Here we address the problem of determining the partial differential equation which
defines the time evolution of this probability density.
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First derivation

P (x, t+ ∆t) =

∫
dyP (x,∆t+ t|y, t)P (y, t)

=

∫
dy

(
1

4πD∆t

)3N/2

e−
(x−y+βD∆t∇U(y))2

4D∆t P (y, t) (3.77)

Let us now expand the right-hand-side for small ∆t.

∫
dy

(
1

4πD∆t

)3N/2

e−
(x−y+βD∆t∇U(y))2

4D∆t P (y, t) =

∫
dy

(
1

4πD∆t

)3N/2

e−
(x−y)2

4D∆t

e−∆tVeff (y)e−
β
2

(U(x)−U(y))P (y, t)

(3.78)

where we have used the Fundamental Theorem of Ito Calculus and

Veff (y) =
Dβ2

4

(
|∇U(y)|2 − 2/β∇2U(y)

)
(3.79)

Now notice that

(
1

4πD∆t

)3N/2

e−
(x−y)2

4D∆t =

∫
dNp

(2π)N
eip(x−y)e−D∆tq2

(3.80)

Thus, expanding to leading orders in a Taylor series for small ∆t:

(
1

4πD∆t

)3N/2

e−
(x−y)2

4D∆t =

∫
dNq

(2π)N
eiq(x−y)(1−D∆tq2)

' δ(x− y) +D∆t∇2δ(x− y) (3.81)

Re-inserting into Eq. (3.78) we obtain an expression for P (x, t + ∆t) which is
accurate to order ∆t:

P (x, t+ ∆t) =

∫
dy
[
δ(x− y) +D∆t∇2δ(x− y)

]
e−

β
2

(U(x)−U(y)) e−∆tVeff (y)P (y, t)

= P (x, t)−∆tVeff (x)P (x, t) +D∆t

∫
dy ∇2δ(x− y) e−

β
2

(U(x)−U(y)) P (y, t) (3.82)

Let us now focus on the last term

D∆t

∫
dy ∇2δ(x− y) e−

β
2

(U(x)−U(y)) P (y, t) = D∆t∇2

∫
dy δ(x− y) e−

β
2

(U(x)−U(y)) P (y, t)

−β
2D∆t

4

∫
dyδ(x− y)(|∇U(y)|2 − 2

β
∇2U(y)) e−

β
2

(U(x)−U(y)) P (y, t)

+βD∆t ∇U(x)

∫
dy∇δ(x− y) e−

β
2

(U(x)−U(y))P (y, t)

= D∆t

(
∇2P (x, t)− Veff (x)P (x, t) + β∇U(x)∇P (x, t) +

β2

2
|∇U(x)|2P (x, t)

)

(3.83)
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Notice that in the last line we have used:

D∆tβ∇U(x)

∫
dy∇δ(x− y) e−

β
2

(U(x)−U(y)) P (y, t)

= D∆tβ∇U(x)∇
∫
dyδ(x− y) e−

β
2

(U(x)−U(y)) P (y, t)

+D∆t
β2

2
|∇U(x)|2

∫
dyδ(x− y) e−

β
2

(U(x)−U(y)) P (y, t)

= D∆tβ∇U(x)∇P (x, t) +D∆t
β2

2
|∇U(x)|2P (x, t) (3.84)

Combining all terms we find the following expression to order ∆t.

P (x, t+ ∆t) = P (x, t) + ∆t
∂

∂t
P (x, t) = D∆t

(
∇2 + β∇U(x)∇+ β∇2U(x)

)
P (x, t)

(3.85)

which leads to the Smoluchowski-Fokker-Planck equation:

∂

∂t
P (x, t) = D

(
∇2 + β∇U(x)∇+ β∇2U(x)

)
P (x, t). (3.86)

Second derivation

An alternative derivation of the Smoluchowski-Fokker-Planck equation can be made
by recalling that, in chapter 1 we introduced Feynman path integral formulation of
quantum mechanics. In particular, we have shown that the path integral represen-

tation of the quantum propagator K(xf , t|x0) = 〈xf |e−
i
~Ht|x0〉 takes the following

form:

K(xf , t|x0) = N
∫
Dx e

i
~
∫ t
t0
dτ( 1

2
mẋ2−U(x)). (3.87)

Upon analytically continuing this expression to imaginary time t = iτ , then we find
an expression for the so-called Euclidean propagator

KE(xf , t|x0) = N
∫
Dx e−

∫ t
t0
dτ( 1

2
mẋ2+U(x)). (3.88)

On the other hand, we recall that the path integral describing the diffusive dynamics
of a classical particle obeying the overdamped Langevin equation reads:

P (xf , t|x0) = N e
− 1

2kBT
(U(xf )−U(xi))

∫
Dx e−

1
4D

∫ t
t0
dτ( 1

4D
ẋ2+Veff (x)) (3.89)

The similarity between (3.89) and (3.88) establishes a striking analogy between the
consequences of delocalisation in quantum mechanics and of thernal fluctuations in
sttochastic dynamics. It tells that, at the formal level, Brownian motion with diffu-
sion coefficient D interacting with a potential U(x) is dual to quantum propagation
in imaginary time of a particle of effective mass meff = 2D interacting with an
effective modified potential Veff (x).

The same analogy can be used to determine the equation obeyed by the Langevin
probability density. Indeed, taking the time derivative of both sides of Eq. (3.74)
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and assuming t − t0 > 0 and using the fact that KE is the Green’s function of the
imaginary time Schrödinger equation:

∂

∂t
P (x, t|x0) = −e−

1
2kBT

(U(x)−U(xi)) ∂

∂t
KE(x, t|xi)

= −e−
1

2kBT
(U(x)−U(xi))(−D∇2 + Veff (x)) KE(x, t|xi)

= −e−
1

2kBT
(U(x)−U(xi))(−D∇2 + Veff (x))e

1
2kBT

(U(x)−U(xi)) P (x, t|xi)
= −e−

1
2kBT

U(x)
(−D∇2 + Veff (x))e

1
2kBT

U(x)
P (x, t|xi)

(3.90)

After taking explicitly the derivatives in the right-hand side and re-arranging the
terms we arrive to the standard form of the Smoluchowski Fokker Planck (SFP)
equation

∂

∂t
P (x, t|x0) = −ĤFPP (x, t|x0) (3.91)

where the ĤFP is the Fokker-Plank operator,

ĤFP = −D∇(∇+ β∇U(x)) (3.92)

SFP is a Continuity Equation

Some comments on the SFP equation are in order. First, we note that this equa-
tion can be written in the form of a continuity equation, which expresses particle
conservation in this theory:

∂

∂t
P (x, t|x0) = D∇ · J(x, t|x0) (3.93)

where J(x, t|x0) = (∇+ β∇U(x)) P (x, t|x0) is the probability current distribution.
Next, we emphasise that the Fokker-Planck operator is not Hermitian. As a

result, the dynamics generated by it is not unitary and therefore time-invariance is
broken: Fluctuation and dissipation generate an irreversible dynamics. A system in
contact with a heat-bath will eventually converge to thermal equilibrium. Indeed,
it is straightforward to show that the Gibbs distribution

Peq(x) =
1

Z
e−βU(x) (3.94)

is the only stationary solution of the SFP equation.
The SFP equation can be solved analytically only for a limited number of simple

problems. In particular, in the absence of the external potential U(x) (free random
walk) the solution with boundary condition x0 is given by:

P (x, t|x0) =
1√

4πDt
e−

1
4Dt

(x−x0)2
(3.95)

This result can be used to study free Brownian diffusion (random walk). It is
straightforward to show that the root-mean-square displacement as a function of
time reads

〈(x(t)− x0)2〉 = 2Dt (3.96)
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This is famous Einstein’s law for Brownian motion , which in 1905 provided the
ultimate proof of the existence of molecular structure of matter.

We conclude with a technical remark. Mathematically, the conditional proba-
bility is a Green’s function, so it obeys the distribution-valued equation

(
∂

∂t
+ ĤFP

)
P (x, t|xi) = δ(t)δ(x− xi) (3.97)

Hence, strictly speaking, equation (3.137) is valid only for t > 0.

3.3 Thermodynamics from Stochastic Dynamics

3.3.1 Microscopic Formulation of the first Law of Thermodynamics

Let us consider the most general case of a (passive) particle immersed in a thermal
bath and possible interacting with external conservative and non conservative forces.
We can model its dynamics through a standard Smoluchowski equation:

.ẋ = − 1

Mγ
∇U(x, t) +

√
2Dη(t) (3.98)

〈η(t)η(0)〉 = δ(t). (3.99)

We emphasize that Brownian particle can be prevented from equlibrating with
the thermal bath by the time variations in the deterministic forces. Following Seki-
moto [26, 27] the heat δQ that the particle exchanges with the thermal bath while
moving over an infinitesimal distance dx during a time step dt from t to t + dt is
quantified as the energy the thermal bath transfer to the particle along this dis-
placement due to friction −Mγẋ and fluctuations

√
2kBTMγη(t), i.e.

δQ(t) =
(
−Mγẋ(t) +

√
2kBTMγη(t)

)
dx(t) (3.100)

where the inner product is intended in the Stratonovich sense. We note that, with
this definition, the heat is counted as positive if received by the particle and as neg-
ative when dumped into the environment via friction. Using the Langevin equation,
we get to

δQ(t) = ∇U(x(t), t) · dx(t) (3.101)

The change of the particle’s “internal” energy dU(t) over the same displacement
dx(t) is given by the total differential

dU(t) = ∇U(x(t), t) · dx(t) +
∂U(x, t)

∂t
dt (3.102)

Thus, if the potential does not vary over time, the only contribution comes from
the change in the potential energy associated with the displacement dx. On the
other hand, even if the particle does not move within dt, its internal energy can
still change due to variations of the potential landscape by an externally applied
time-dependent protocol. Being due to forces imposed and controlled externally,
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the associated contribution ∂U(x,t)
∂t dt is interpreted as the rate of work performed by

external forces on the particle and

δW (t) =
∂U(x, t)

∂t
dt (3.103)

is the total work.

Combining the last three equation leads to the first law of thermodynamics:

dU = δQ+ δW. (3.104)

3.3.2 Microscopic Irreversibility, Entropy Production and Detailed
Balance

The next step towards a thermodynamics characterization of the Brownian motion
is to introduce an entropy change or entropy production associated with individual
stochastic trajectories. To this end, we connect the concept of thermodynamic
irreversibility (associated with entropy production) with a statistical mechanical
definition, based on the probability of observing microscopic paths in opposite order.

We consider a set up in which system is described for simplicity by a single
variable x in contact with the bath, and obeying an overdamped Langevin equation.
In the most general case, we assume the particle is evolving according to an explicitly
time-dependent potential, U(x, t).

To establish a relationship between thermodynamic and microscopic reversibility,
we consider two stochastic trajectories, which are realized in the reverse time order.
In the first process, the particle starts from configuration x(0) = xi and ultimately
reaches configuration x(t) = xf along some path x(τ), under the influence of the
potential U(x, t). In the reversed process, the particle travels along the reversed path
x̄(τ) = x(t− τ), i.e. starts from x̄(0) = xf and ultimately reaches configuration xi,
under the influence of the time-reversed potential U(x, t− τ) ( with τ ∈ [0, t]).

Using the formulation of stochastic path integrals, it is possible to compute
the probability density of observing the “forward” path x(τ), relative to that of
observing the reversed one x̄(τ). The former density is given by the probability of
observing the initial configuration P (x0, 0), multiplied by the negative exponent of
the Onsager-Machlup action associated to the forward path, SOM [x(τ)]:

P [x(τ)] = N e−SOM [x], (3.105)

where N is an irrelevent normalization factor. Conversely, the probability density
for the reversed process is given by the probability density P̄ (xf , 0) of observing
xf at time 0, multiplied the negative exponent of the Onsager Machlup functional
evaluated along the reversed path with the time-inverted external potential, S̄OM [x̄]:

P̄ [x̄(τ)] = N e−S̄OM [x̄] (3.106)

The ratio between these two probability densities is

R[x, x̄] =
P̄ (xf , 0) P̄ [x̄(t)|xf ]

P (xi, 0) P [x(t)|xi]
(3.107)
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Let us adopt for convenience the Stratonovich Calculus (where the Fundamental
Theorem of Calculus is the same of the standard Riemann’s). Then, the probability
of a given path x(t) satisfying x(τ) = xf and x(0) = xi. is

P [x(τ)] ∝ exp

[
−
∫ τ

0
dt

(
(ẋ(τ) + D

kBT
∇U(x(τ), τ))2

4D
− D

2kBT
∇2U(x(τ), τ)

)]

(3.108)

A similar structure is obtained for the probability density of the reversed path x̄(τ):

P̄ [x̄(τ)] ∝ exp

[
−
∫ τ

0
dτ

(
( ˙̄x(τ) + D

kBT
∇Ū(x̄(τ), τ))2

4D
− 1

2kBT
∇2Ū(x̄(τ), τ)

)]

(3.109)

It is immediate to check that most of these terms appear identically in P [x(τ)] and
P̄ [x̄(τ)], thus cancel out in the ratio R. For example,

∫ τ

0
dτ

1

4D
( ˙̄x(τ))2 =

∫ τ

0
dτ

1

4D
(ẋ(t− τ))2

= − 1

4D

∫ 0

t
dτ(ẋ(τ))2 =

1

4D

∫ t

0
dτ(ẋ(τ))2 (3.110)

The only surviving factor arises from the cross product between ẋ and ∇U , which
involves a single time derivative, thus adds up in the ratio, rather than canceling
out. The result for R is then:

R[x, x̄] =
P̄ (xf , 0) P̄ [x̄(t)|xf ]

P (xi, 0) P [x(t)|xi]
=
P̄ (xf , 0)

P (xi, 0)
e

1
kBT

∫ τ
0 dt ẋ(τ)·∇U(x,τ)

(3.111)

To make contact with the thermodynamic concept of reversibility, we now express
this relationship in terms of entropy productions. We begin by noting that, using
equation (3.101), the functional at the exponent in the right-hand-side,

∆Sbath =
1

T

∫ τ

0
dτ ẋ(τ) · ∇U(x, τ), (3.112)

can be written as follows:

1

T

∫ τ

0
dt ẋ(t) · ∇U(x, t) =

1

T

∫ xf

xi

dx(t) · ∇U(x, t) = −
∫ f

i

δQ(t)

T
= ∆S (3.113)

Thus, ∆S can be interpreted as the entropy production in the bath, resulting from
the exchange of heat with the system.

In addition to this entropy production, there is also a change in entropy associ-
ated with the change in the microscopic state of the system. We can associate an
entropy density to a configuration, i.e.

Ssys(x, t) = −kB logP (x, t), (3.114)

Indeed, with such a definition, the ensemble entropy is given by the usual expression:

Ssys = −kB
∫
dxP (x, t) logP (x, t). (3.115)
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In the specific case of a Langevin process, P (x, t) is the solution of the Smoluck-
owski equation associated to the Langevin equation.

The change in system entropy along the trajectory is therefore given by

∆Ssys = −kB logP (x, τ) + kB logP (x, 0), (3.116)

The total entropy change in the system and bath is then:

∆Stot =
1

T

∫ t

0
dτ ẋ(τ) · ∇U(x, τ)− kB logP (x, t) + kB logP (x, 0), (3.117)

We then use the fact that

R[x, x̄] =
P̄ (xf , 0)

P (xi, 0)
e∆Sbath =

P (xf , t)

P (xi, 0)
e∆Sbath

= e−kB logP (xf ,t)+kB logP (xi,0)e∆Sbath

= e∆Sbath+∆Ssys (3.118)

Therefore the ratio R is related to the total change in entropy in the forward process:

R = e
∆Stot
kB (3.119)

Note that if the system is initially not in an equilibrium condition, i.e. P (x, t) 6=
1
Z e
−βU(xi) or is subject to a time-varying external force, the total change in entropy

is non-null and the probability for the forward and backward processes are not
identical, hence the irreversibility.

Conversely, if the system is in equilibrium and is not subject to time-dependent
external drives, then

∫ τ
0 dt ẋ(t) · ∇U(x, t) = U(xf )−U(x0), thus ∆Stot = 0. In this

case, the total change in entropy vanishes and the probability of the forward and
backward process coincide, i.e.

R[x, x̄] = 1 (3.120)

In this case, the system is said to obey a microscopic reversibility condition.
Finally, we note after integrating over all paths with identical boundary condi-

tions, from Eq. (3.111) we obtain the so-called detailed balance condition:

ρeq(x0)P (xf , τ |x0) = ρeq(xf )P (x0, τ |xf ). (3.121)

where ρeq(x) = 1/Ze−βU(x) is the equilibrium distribution.

3.3.3 Fluctuation Theorems

The most useful results of thermodynamics are usually derived in the adiabatic limit,
i.e. when the parameters which define the external potential are assumed to change
infinitely slowly along some path g from an initial point A to a final point B in the
parameter space. In this case, the total external work W performed on the system
is equal to the Helmholtz free energy difference ∆F between the initial and final
configurations:

W = ∆F = F (B)− F (A) (3.122)
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Away from the adiabatic limit, i.e. when the parameters are switched along g
at a finite rate, the work W will depend on the microscopic initial conditions of the
system and reservoir, and will, on average, exceed the difference in Helmotz free
energy:

〈W 〉 = −δQ+ δU > −T∆S + ∆U = ∆F, (3.123)

where we have used the Clausius inequality, stating that for a general irreversible
process T∆S > δQ. The difference 〈W 〉 − ∆F is the dissipated work, which is
associated with the increase of entropy during an irreversible process.

The average in Eq. (3.123) is performed over an ensemble of different measure-
ments of W , each of which is performed by first letting the system thermalize with
the bath (at temperature T ) and then perfoming a transition form A to B by varying
the parameter.

In a relatively recent celebrated paper, Jarzynsky [18] derived the following equal-
ity :

〈e−βW 〉 = e−β∆F (3.124)

Shortly after, Crooks [19] came up with a closely related relationship

PF (∆S)

PR(−∆S)
= e

(
∆S
kB

)
. (3.125)

In this equation PF (∆S) is the probability of producing a certain amount of en-
tropy in a non-equilibrium process in which the system is driven by some external
force according to some schedule, starting from configuration sampled from some
initial (e.g. equilibrium distribution). PR (−∆S) is the probability of generating an
entropy −∆S in the reversed process, in which the schedule of the external force
has been inverted too. We stress that from the discussion in the previous section it
follows that the entropy is an odd function of time.

The Crook’s inequality is more general that Jarzynski’s one. Indeed, the latter
can be derived from the former. To see this we first note that Eq. (3.125) implies

〈e−
1
kB

∆S〉F =

∫ ∞

−∞
d∆S PF (∆S) e

− 1
kB

∆S
=

∫ ∞

−∞
d∆S PR(−∆S) = 1 (3.126)

In this equation, the average is performed over many independent realization of
the same process. Jarzynsky fluctuation theorem (3.124) is then readily obtained
by using the relationship (3.123) and recalling that the Helmotz free energy F is a
state-function, thus can be taken outside the average:

1 = 〈e−
1
kB

(SB−SA)〉F = 〈e−β(WAB−(FB−FA))〉F (3.127)

⇒ e−β(FB−FA) = 〈e−βWAB 〉F (3.128)

Both theorems (3.124) and (3.125) are quite remarkable. Indeed, they are among
the few exact relationship in statistical mechanics which connect an equilibrium con-
cept such as the Helmotz free-energy to non-equilibrium averages over different real-
izations of a dynamical process. We emphasize that, unlike most non-equilibrium re-
lationships of statistical mechanics (such as Onsager’s regression hypotheses), these
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results are not confined to small non-equilibrium perturbations, but instead apply to
systems which are driven arbitrarily far from equilibrium. They state that it is pos-
sible to extract equilibrium information ∆F from the ensemble of non-equilibrium
(finite-time) measurements.

The proof of Crooks theorem follows directly from the discussion about micro-
scopic reversibility we presented in the previous section. In the following, we simply
repeat the same argument with a notation closer to that of the original paper of
Crooks. Namely, we assume for simplicity an overdamped Langevin dynamics and
consider the instantaneous microstate of the system obeying Langevin dynamics to
be specified by x and λ, where x represents a point in configuration space and λ(t)
is a controlled time-dependent parameter associated with an external force applied
on the system. A particular realization of the transformation on the system induced
by the external force is described by a path in configuration space, thus is specified
by the pair of functions (x(t), λ(t)).

For convenience, we consider a symmetric time interval t ∈ (−τ, τ). In addi-
tion, in analogy with the discussion in the previous section, we also introduce a
time-reversed path (x(−t), λ(−t)). The overbar has been introduced to stress that
quantities which are odd under a time-reversal, such as the momenta, have also
changed sign. Recalling Eq.s (3.111) and (3.113) then

P[x(+t)|λ(+t)]

P[(x(−t)|λ(−t)] = e−βQ[x(+t),λ(+t)] (3.129)

Q is the heat, i.e. the amount of energy transferred from the bath into the system.
As it is evident from Eq. (3.111) the heat is a functional of the path, and odd
under a time reversal Q[x(+t), λ(+t)] = −Q̄[x̄(−t), λ̄(−t)]. Recalling Eq.s (3.113)
and (3.116) we find the expression for the total entropy production along a given
path in the forward process:

∆SF = kB logP (x,−τ)− kB logP (x, τ)− βQ[x(+t), λ(+t)] (3.130)

Let us now compare the entropy production probability distribution of a pro-
cess defined by a given path x(t) with the entropy production distribution of the
corresponding time-reversed process x̄(−t). To allow this comparison of forward
and backward processes, we will rely on the fact that the entropy production is
odd under a time reversal, ∆SF = −∆SR. Considering Eq. (3.130) and recalling
that the heat is an odd function, then the ∆SF = −∆SR condition is equivalent
to requiring that the final distribution of the forward process, P (x, τ) is the same
(after a time reversal) as the initial phase-space distribution of the reverse process,
P (x̄,−τ). This condition is satisfied when the system begins and ends in equilibrium
or when the system begins and ends in the same time symmetric non-equilibrium
steady state. Combining Eq.s (3.129) and (3.130) we find:

P (x,−τ) P[x(+t)|λ(+t)]

P (x̄, τ)P[(x(−t)|λ(−t)] = e
1
kB

∆SF (3.131)

Let us now compute the probability of observing a particular value of entropy
production in a forward process:

PF (∆S) = 〈δ(∆S −∆SF )〉F =

∫
dxi

∫
dxf

∫ xf

xi

Dx δ(∆S −∆SF )

P[x(+t)|λ(+t)]P (xi,−τ) (3.132)
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Using Eq. (3.131) it is possible to re-write this in terms of an integral over the
reversed process:

PF (∆S) = e
+ 1
kB

∆S
∫
dxi

∫
dxf

∫ xf

xi

Dx δ(∆S + ∆SR)

P[x̄(−t)|λ̄(−t)]P (x̄i,+τ)

= e
+ 1
kB

∆S〈δ(∆S + ∆SF )〉R
= e

+ 1
kB

∆S
PR(−∆S) (3.133)

thus prooving Crooks relationship (3.125).
To better appreciate the significance of Crooks theorem, let us now specialize

on the case in which a system that is in equilibrium from time −∞ to −τ is driven
out of equilibrium by a change in the controlled parameter, λ till time τ . Then, it
is allowed to relax, so that it once again reaches equilibrium at t → ∞. For the
forward process the system starts in the equilibrium ensemble specified by λ(−∞),
and ends in the ensemble specified by λ(∞), which are Gibbs distributions:

Peq(x|λ) =
e−βH(x,λ)

∫
dxe−βH(x,λ)

= eβF (λ)−βH(x,λ) (3.134)

After substituting these expression into Eq . (3.130) and using the first principle
of thermodynamics we find

∆SF = −β∆F + βW (3.135)

Since the change in free energy is path independent, the probability of entropy
production is essentially the probability of exerting a given work W . thus, Crooks
theorem implies

PF (βW )/PR(−βW ) = e−β∆F+βW (3.136)

From an average over the work performed in forward and backward processes it is
possibile in principle to compute the free energy difference ∆F .

3.4 Stochastic Dynamics at Low Resolution

The dynamics of complex systems, such as biomolecules, glasses or liquids, is strongly
influenced by the presence of a large number of metastable states, separated by all
others by energy barriers. Barrier crossing transitions are rare events. Indeed, at
least at the classical level, energy barriers can only be overcome when a peculiar
sequence of thermal fluctuations occurs. These fluctuations must be such to drive
system all the way to the top of the free energy barrier (the so-called transition
state). Once the system has passed the transition state it is likely to diffuse to new
meta-stable state, than to return to the original one.

Clearly, when the height of the energy is large compared to the typical energy
of thermal fluctuations we expect that such thermally activated transitions should
be rare. In particular, according to Kramers-Arrhenius theory 1 such a rate of

1see e.g. [14]
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transitions is exponentially suppressed with the height of the free energy barrier .
k = τ0 exp[−β∆G] (here τ0 is a typical time-scale associated with thermal relaxation
within the initial state).

Therefore, the presence of energy barriers determines the decoupling between the
time scales associated to the exploration of local metastable minima ∼ τ0 and the
slow time-scales associated to transitions between different basins and, ultimately,
to global thermalisation, ∼ 1/k. In this chapter, we exploit this gap in time scales
to develop a rigorous effective low-energy description of the dynamics of complex
classical systems which goes under the name of Markov State Model approach.
From a RG inspired standpoint, we set a resolution frequency scale λ such that the
transitions between local metastable states occur at a rate k � λ, while the fast
relaxation dynamics within each state is UV physics, occurring at frequencies k � λ
and thus is parametrised in terms of few coefficients in the effective theory.

3.4.1 Hermitian formulation of Fokker-Planck Dynamics and Spec-
tral Decomposition

The starting point to develop such an approach is to return to Fokker-Planck (FP)
equation (3.91)

∂

∂ t
P (x, t) = −HFPP (x, t) (3.137)

The non-hermitian character of HFP implies that its left- and right- eigenvalues do
not coincide.

As sketched already in Eq. (3.90) it is possible to define a (non-unitary) trans-
formation acting on the FP operator and the probability distribution, which puts
the FP equation an hermitian form:



Hh = e

β
2
U(x) HFP e−

β
2
U(x) = −D∇2 + Dβ2

4

[
(∇U(x))2 − 2

β ∇2U(x)
]

ψ(x, t) = e−
β
2
U(x)P (x, t)

(3.138)

Under this transformation, the FP equation turns into a Schrödinger equation in
imaginary time:

∂

∂t
ψ(x, t) = −Hh ψ(x, t). (3.139)

In the following, the function ψ(x, t) will be referred to as the hermitian component
of the probability density P (x, t). As a consequence, the Green’s function of the FP
operator, i.e. the conditional probability P (x, t|x0) which obeys

(∂t +HFP )P (x, t|x0) = δ(t)δ(x− x0) (3.140)

is related to the Feynman imaginary time propagator of the fictitious quantum
system defined by the hermitian operator Hh, i.e.

P (x, t|x0) = e−
β
2
U(x)+β

2
U(x0) 〈x|e−Ĥht|x0〉 ≡ e−

β
2
U(x)+β

2
U(x0) K(x, t|x0) (3.141)

where

(∂t +Hh)K(x, t|x0) = δ(t)δ(x− x0). (3.142)
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It is straightforward to show that Hh and HFP have the same spectrum, which
is non-negative definite and contains a null eigenvalue, 0 = λ0 < λ1 < . . .. We have
already mentioned that the right zero-mode R0(x) is the Gibbs distribution:

HFPR0(x) = 0, R0(x) =
1

Z
e−βU(x), (3.143)

where Z =
∫
dx e−βU(x) is the system’s canonical partition function.

The hermitian components of the left- and right- eigenstates of HFP are in one-
to-one correspondence to the eigenstates φi(x) of the hermitian operator Hh. In
other words, defining

Ĥhφn(x) = λnφn(x) (3.144)

with the normalization
∫
dxφ∗n(x)φm(x) = δnm (3.145)

Then, the functions

Rn(x) =
1√
Z
e−

β
2
U(x) φn(x) (3.146)

Ln(x) =
√
Z e

β
2
U(x) φn(x) . (3.147)

are eigenstates of ĤFP and Ĥ†FP , respectively, obeying the normalization relation-
ship:

∫
dxRn(x)Lm(x) = δnm. (3.148)

We note that the normalization factors in Eqs. (3.146) and (3.147) have been
introduced to ensure that the right zero-mode R0 has the correct normalization.
Namely, since φ0 = 1√

Z
exp(−β/2U(x)), then the definition (3.146) leads to

R0(x) =
1

Z
e−βU(x). (3.149)

Correspondingly, the left zero mode is just the identity

L0(x) = 1. (3.150)

Finally, we note that the conditional probability density P (x, t|x0) (i.e. the
Green’s function of the FP operator) can be expanded as a series of right and left
eigenfunctions of HFP or, equivalently, eigenfunctions of Hh:

P (x, t|x0) = e−
β
2
U(x)+β

2
U(x0) 〈x|e−Ĥht|x0〉 (3.151)

= e−
β
2
U(x)+β

2
U(x0)

∑

n

φn(x) φn(x0)e−λnt (3.152)

=
∑

n

Rn(x)Ln(x0)e−λnt (3.153)

where we have made use of the fact that the eigenstates φn(x) are real-valued func-
tions. This expression shows that the lowest non-vanishing eigenvalues of the FP
operator is associated to the inverse time required to attain global thermalization.
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p(i)(x)

h(i)(x)

Figure 3.1: Graphical representation of the definition of microstate distributions
p(i)(x) and characteristic functions h(i)(x). The continuous line denotes the energy
landscape.

3.4.2 FP Dynamics in Rugged Energy Landscapes

Let us now specialize on systems characterized by a rugged energy landscape, i.e.
by a potential energy U(x) with many local minima, separated by barriers. In this
case the spectrum of the FP operator will be gapped, with a set of high-frequency
modes associated to local relaxation within the states and a few low-frequency modes
associated to hopping between states and global relaxation (Figure 3.2). Our goal
is to construct a low-energy ET which only deals with dynamics at time intervals
much longer than the inverse of the lowest eigenvalue above the gap, Λ. Thus, Λ
represents a typical value for the hard-frequency cut-off scale of the effective theory,
i.e. t� dt ≡ 1/Λ.

To explicitly construct such an effective theory, starting from the microscopic
Fokker-Planck dynamics, we quote an important (yet very recent) result of mathe-
matical physics2: In the spectrum of the FP operator is gapped with N eigenvalues
below the gap, there exist exactly N linear combinations of the corresponding right-
eigenstates,

p(i)(x) =

N∑

j=1

Cij Rj(x) (3.154)

which simultaneously satisfy the following three properties:

1. Non-negativity, i.e. p(i)(x) ≥ 0

2. Disjointness, i.e. p(i)(x)p(j)(x) = 0 for i 6= j and ∀x

3. Local Gibbseanity, i.e.

p(i)(x) =
1

zi
e−βU(x)h(i)(x) with zi =

∫
dx h(i)(x) e−βU(x), (3.155)

where h(i)(x) is negligible everywhere and equal to 1 in the vicinity of one
and only one of the local meta-stable states. p(i)(x) is then interpreted as

2The interested reader can find a discussion in [10]
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the probability distribution associated to the i−th so-called Markov state and
h(i)(x) denotes the corresponding characteristic function (see Fig. 6.1).

It is also relevant to consider the following linear combinations of the left eigen-
states Li(x), with 1 ≤ i ≤ N :

a(i)(x) =
1

Z

N∑

j=1

ziCij Lj(x). (3.156)

where the convenience of the 1/Z normalization and the zi factor will become clear
below. The interest in these linear combinations resides in the fact that the a(i)(x)
functions are proportional to the characteristic functions of the microstates, thus are
approximatively 1 where p(i)(x) is locally Gibbsean, and are negligible elsewhere. To
see this, it is sufficient to isolate the hermitian component of the a(i)(x) distributions:

a(i)(x) =
1

Z

N∑

j=1

Cijzi
√
Z φj(x) e

β
2
U(x)

=
1

Z

N∑

j=1

ziCij
√
Z

√
Z√
Z

e−
β
2
U(x)

e−
β
2
U(x)

φj(x) e
β
2
U(x)

= eβU(x)
N∑

j=1

ziCij Rj(x)

= zip
(i)(x) eβU(x) ' h(i)(x) (3.157)

In the hermitian formalism, the left- and right- state distributions are replaced by
a single distribution π(i)(x):

π(i)(x) ≡ hi(x)√
zi

e−
β
2
U(x) =

{
1√
zi
e−

β
2
U(x) a(i)(x)

√
zie

+β
2
U(x) p(i)(x)

. (3.158)

Once the dynamics has been coarse-grained at the level of micro-states, the
configuration space representation becomes redundant. Our goal is to derive an
equation for the time evolution of the probability to observe the system in the i−th
microstate, i.e.

ni(t) =

∫
dxhi(x)P (x, t) =

∫
dx ai(x) P (x, t) (3.159)

where P (x, t) is the solution of the FP equation, given some initial distribution. We
note that in the long time limit we obtain the expected equilibrium result:

ni(t)→
zi
Z
. (3.160)

To derive the equations for ni(t) we consider these densities at time t+ ∆t:

ni(t+ ∆t) =

∫
dxhi(x)P (x, t+ ∆t) (3.161)
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We now exploit the Markovian character of Langevin dynamics, which implies

ni(t+ ∆t) =

∫
dxhi(x)

∫
dyP (x,∆t|y)P (y, t) (3.162)

We now use the fact that, P (y, t) can be approximatively expressed as

P (y, t) =
N∑

n=1

Rn(y)cn e
−λnt, cn =

∫
dxLn(x)P (x, t) (3.163)

since the contribution from all terms above the gap is exponentially suppressed. In
turn, the Rn(y) can be expressed by the locally Gibbsean distributions:

P (y, t) =

N∑

n=1

∑

j

Cnjpj(y)cn e
−λnt =

N∑

n=1

∑

j

Cnjhj(y)
1

zj
e−βU(y)cn e

−λnt (3.164)

Then

ni(t+ ∆t) =

∫
dxhi(x)

∫
dyP (x,∆t|y)

N∑

n=1

∑

j

Cnjhj(y)
1

zj
e−βU(y)cn e

−λnt(3.165)

This equation is conveniently rewritten as

ni(t+ ∆t) =
∑

j

T
(∆t)
ij

N∑

n=1

Cnjcn e
−λnt (3.166)

where

T
(∆t)
ij =

∫
dxhi(x)

∫
dyP (x,∆t|y)

1

zj
e−βU(y) hj(y) (3.167)

is called the transition matrix and measures the probability to perform a transition
from state j to state i in lag-time ∆t. Finally, we show that the summation

N∑

n=1

Cnjcn e
−λnt (3.168)

is in fact just an expression for nj(t). Indeed

nj(t) =

∫
dxhj(x)P (x, t) =

∫
dxhj(x)

∑

n

cne
−λntRn(x)

=

∫
dxhj(x)

∑

n

cne
−λntCnjhj(x)

e−βU(x)

zj

=
∑

n

cne
−λntCnj (3.169)

In conclusion, we arrived to the so-called Master Equation, which describes the FP
evolution in the space of microstates:

ni(t+ ∆t) =
∑

j

T
(∆t)
ij nj(t) (3.170)
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Figure 3.2: The different frequencies scales must be ordered according to a specific
hierarchy for the MSM to represent an effective theory of MD. The forbidden region
is inaccessible to the effective theory.

We stress that conservation of probability implies that the transition matrix is in
fact left-stochastic, i.e. it obeys the sum-rule:

N∑

j=1

T
(∆t)
ji = 1 (3.171)

Since τ is an infinitesimal time scale it is sometimes convenient to express the
Master Equation (3.170) in differential form. This is done by introducing the so-
called rate matrix Kij :

T
(∆t)
ij = δij + ∆tKij (3.172)

leading to the so-called continuous time Master Equation:

ṅi(t) =

N∑

j=1

Kijnj(t) (3.173)

The left-stochasticity of Tij is reflected into Kij as follows

Kij =

{
kij ≥ 0 if i 6= j

−∑i kij if i = j
(3.174)

We emphasize again that, in the RG perspective, time derivative in the left-
hand-side of Eq. (3.173) does not represent a real derivative, but rather a finite
increment. Indeed, dt cannot be set smaller than the inverse frequency cut-off scale
Λ. From this discussion it follows that the lag-time τ of discrete-time MSM must
obey τ > dt > 1/Λ. The present effective Markovian coarse grained description of
the stochastic dynamics is usually referred to as a Markov State Model (MSM).



Chapter 4

Statistical Mechanics of Rare
Events

Complex systems often exhibit extremely slow structural re-arrangements. Example
of these process include structural relaxation in glasses, but also conformational
transitions in biomolecules, which can occur at time-scales which are many orders
of magnitude longer than those associated to local conformational changes. Being
able to predict the time-evolution of these systems by explicitly accounting for the
motion of all its degrees of freedom typically provides an extremely challenging
task. For example, to study the dynamics of a protein, one typically needs to solve
∼ 106 − 108 coupled equations of motions.

But even if the we have enough computer power to be able to solve all the
relevant coupled differential equations for very long time intervals, we are still left
with the problem of physically interpreting the results of our numerical simulations.
As we shall see, this step involves tricky conceptual questions. For example, suppose
we seek to use computer simulations to predict the native state of a protein. How
can we decide when we have found the native state? One possibility would be run a
very long molecular dynamics simulation and monitor the potential energy for each
configuration. Then native state may be identified as the configuration of minimum
energy.

This approach, however, would not be entirely accurate and conceptually correct.
In fact, the native state of a protein does not consist of a unique configuration,
because of thermal fluctuations visits a finite portion of phase space in the structural
neighborhood of the minimum energy configuration. In other words, the native state
of a protein is a thermodynamically stable state and has a finite entropy S and
represents the minimum of free energy G = U − TS. By contrast, the entropy of
unfolded state is huge, as there are many coil configurations which can be reached
by denaturing the molecule. How can one decide when two configurations belong to
the same meta-stable state or to different states?

Related questions arise in the study of kinetics: integrating the equations of mo-
tion starting from different initial conditions leads to a set of trajectories which will
visit different points of phase space. In general, not all these trajectories will pro-
vide information to the same physical process. For example, the small fluctuations
of a protein around the minimum energy configuration, i.e. the trajectories confined
within the native state, provide different information from thermally activated tra-

55
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jectories which connect the native state and denatured state. Let us now consider
two trajectories which connect native and unfolded state. Even in this case, it is not
clear that they represent equivalent realization of the same structural reaction, as
they may represent kinetically distinct reactive channels, i.e. different independent
ways in which the same reaction can take place.

This example illustrates a number of questions which naturally emerge when
studying dynamics and kinetics of complex systems: How to quantitatively distin-
guish trajectories which represent different microscopical realizations of the same
physical process from those which represent ”truly” different processes? How to
define and classify the phases of a complex systtes, as a function of e.g. tempera-
ture and urea concentration? How to predict the rate at which reactions occur and
the relative kinetic weights of different reaction channels? This chapter is devoted
to the rigorous theoretical framework to describe rare events in classical statisti-
cal mechanical systems. For sake of definiteness we shall focus on system obeying
(overdamped) Langevin dyanamics. However, most of the results apply in general
Markovian systems obeying microscopic reversibility.

4.1 First-Passage Time Distribution

A key concept which is required to investigate the kinetics of thermally activated
transitions between two meta-stable states is the distribution of first-arrival times
into the product, stating from configurations in the reactant. In a more mathemat-
ical language, we are interested in the distribution of first passage times across a
hyper-surface ∂W which is defined to wrap the product.

To this end, we define a new Green’s function, which has the following interpre-
tation in terms of conditional probability densities:

P ∗W (xf , tf |xi) = Prob.( going from xi to xf in time t,without ever touching ∂W )

(4.1)

where ∂W denotes the boundary of the region W .

In the framework of the overdamped Langevin dynamics, this new Green’s func-
tiocan be given the following path integral representation:

P ∗W (x, t|xi) = e−
β
2

(U(x)−U(xi))

∫ x(t)=x

x(ti)=xi

Dqe−
∫ t
0 dτ β ẋ2

4D
+Veff [x]+ΩW [x] (4.2)

where ΩW (x) is a characteristic function which vanishes outside the region W and
is infinite inside.

Imposing that ΩW (x)P ∗W (x, t|xi) = 0, implies that P (x, t|x0) and P ∗W (x, t|x0)
satisfy the same FP equation, i.e.

∂

∂t
P ∗W (x, t|xi)−D∇ [∇P ∗W (x, t|xi) + β∇U(x) P ∗W (x, t|xi)] = δ(t)δ(x− xi).

(4.3)

On the other hand, P ∗W and P are in general different distributions, since P ∗W must
satisfy the extra requirement to vanish at the boundary of the region W .
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The integral over the entire space of P ∗W yields the survival probability, i.e. the
probability of not having entered yet the region delimited by ∂W , at time t.

S(∂W, t|xi) =

∫
dx P ∗W (x, t|xi). (4.4)

Clearly, 1−S(∂W, t|xi) represents the probability of having crossed ∂W at some time
before t, starting from an initial point xi at a finite distance from ∂W . This obser-
vation can be used to compute the probability distribution F (∂W, t|xi) of crossing
∂W for the first time a time t. Indeed,

1− S(∂W, t|xi) =

∫ t

0
dt′F (∂W, t|xi), (4.5)

thus

F (∂W, t;xi) ≡
∂

∂t
(1− S(∂W, t|xi)) = − ∂

∂t
S(∂W, t|xi)

= −
∫
dx

∂

∂t
P ∗W (x, t|xi)

= −D
∫
dx ∇(∇P ∗W (x, t|xi) + β∇U(x) P ∗W (x, t|xi))

= D

∫

x∈∂W
dσ · (∇P ∗W (x, t|xi) + β∇U(x)P ∗W (x, t|xi))

=

∫

x∈∂W
dσ · J∗W (x, t|xi) (4.6)

where

J∗W (x, t|xi) = D(∇P ∗W (x, t|xi) + β∇U(x)P ∗W (x, t|xi)) (4.7)

is the probability current associated to the modified propagator P ∗W (x, t|xi) and dσ
represents an infinitesimal surface element of the boundary of W , oriented outwards.
This equation expresses the first passage time distribution as a integral over the flux
through the surface ∂W of the conditional probability, with absorbing boundary
condition. Notice that this Eq. yields the well-known expression for the mean-first-
passage time across ∂W [15]:

〈t〉∂W =

∫ ∞

0
dtS(∂W, t|xi) (4.8)

4.2 Transition Path Theory

Transition Path Theory (TPT) provides a rigorous theoretical framework to charac-
terize classical thermally activated transitions between two given metastable state,
here denoted with reactant state R and product state P , embedded in the system’s
configuration space Ω (see Fig. 1). While it is in principle possible to formulate this
theory for any dynamics which obeys the fundamental requests of e markovianity
(possibly in phase-space) and microscopical reversibility ( which implies ergodicity
with respect to some equilibrium distribution), for sake of simplicity, we shall here
specialize on systems obeying the underdamped Langevin equation.
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The first step in TPT consists in providing a rigorous mathematical definition
of transition paths (e.g. represented by the solid lines in Fig. 1) To this goal it is
convenient to introduce the following time-dependent functions:

{
t+(t) = smallest time t′ ≥ t such that x(t′) ∈ R ∪ P
t−(t) = largest time t′ ≤ t such that x(t′) ∈ R ∪ P

(4.9)

The function t+(t) returns the first instant after time t at which the trajectory x(t)
is in either the reactant or the product state. Similarly, t−(t) returns the last time
before t at which the trajectory was in either of these states (see Fig. 1).

The ergodic trajectory is said to be reactive at some specific instant t̄ if the
following three conditions are simultaneously satisfied:

1. The instantaneous configuration at time t̄ lies outside both the reactant and
product states (i.e. in the so-called transition region): ΩT ≡ Ω/(R ∪ P ).

2. The trajectory x(t) last entered the transition region by leaving the reactant
state: x[t−(t̄)] ∈ R

3. The trajectory x(t) will leave the reactive region by entering the product state:
x[t+(t̄)] ∈ P .

A transition path is a continuous piece of the ergodic trajectory x(t) which is
entirely reactive. The transition path ensemble is formed by the set of all transition
paths which are contained in the ergodic trajectory. Finally, the rate of a reaction
can be defined as the average number of reactive pathways NR observed per unit
time interval T :

kRP = lim
T→∞

NR(T )

T
. (4.10)

4.2.1 Committor functions

Any generic point x of configuration space can be visited by both reactive and
non-reactive parts of the ergodic trajectory. The probability Preact.(x) that a given
segment of the ergodic trajectory which visits point x is reactive can be conveniently
expressed by introducing the so-called (forward) committor function q+(x), which
measures the probability that a trajectory initiated at some point x ∈ ΩT will enter
the product state P before returning to the reactant R. Thus, by definition, q+(x)
obeys the boundary condition:

{
q+(x) = 0, x ∈ ∂R
q+(x) = 1, x ∈ ∂P,

(4.11)

where ∂R and ∂P denote the boundaries of the reactant and product regions, respec-
tively. Similarly, one can define the backward committor q−(x) as the probability
that a trajectory passing through point x will next return to the reactant R be-
fore landing into the product P . By microscopic time-reversibility, q−(x) can be
expressed in terms of the forward committor: q−(x) = 1− q+(x).
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We now show that q+(x) (and thus q−(x)) obeys the so-called stationary back-
ward Kolmogorov equation (see e.g. [?]):

D∇2q+/−(x)− β∇U(x) · ∇q+/−(x) = 0. (4.12)

To prove this statement, we consider the Green’s function P ∗∂W (x, t|xi) introduced in
(4.1), where the absorbing boundary conditions are defined on border of the region
defined by the reactant

∂W ≡ ∂R ∪ ∂P. (4.13)

By definition, the committor probability is related to the flux of the associated
probability current J∗∂W through the border of the product. More precisely,

q(x) =

∫ ∞

0
dt

∫

∂P
dσ′ · J∗∂W (x′, t|x)

= D

∫ ∞

0
dt

∫

∂P
dσ′ · (∇′ + β∇U(x′))P ∗∂W (x′, t|x)

(4.14)

Indeed, this equation represents the probability of arriving at the border of the
product state at any time, without having touched the border of the reactant state.

Let us now recall that all FP propagators also obey the backward FP equation:

−∂t0P (xf , t|x, t0) = D(∇2
x − β∇U(x)∇x)P (xf , t|x, t0)

≡ Ĥb P (xf , t|x, t0) (4.15)

Assuming homogeneity (i.e. P (x, t|x0, t0) = P (x, t − t0|x0, 0)), the equation (4.15)
is rewritten as

∂tP (xf , t|x, t0) = D(∇2
x − β∇U(x)∇x)P (xf , t|x, t0)

≡ Ĥb P (xf , t|x, t0) (4.16)

Finally applying the backward Fokker-Planck operator to both sides of Eq. (4.14)
and using (4.16) we obtain:

Ĥb q(x) = Ĥb

∫ ∞

0
dt

∫

∂P
dσ′ · J∗∂W (x′, t|x)

= D

∫ ∞

0
dt

∫

∂P
dσ′ · (∇′ + β∇U(x′)) Ĥb P

∗
∂W (x′, t|x)

= D

∫ ∞

0
dt

∂

∂t

∫

∂P
dσ′ · (∇′ + β∇U(x′))P ∗∂W (x′, t|x)

= F (t =∞)− F (t = 0) = 0 (4.17)

The last line denotes the flux of the probability current through the hyper surface
at very large times minus that at the initial time. The former flux vanishes because,
in an ergodic system, at infinite time the system must have visited the product.
The latter vanishes assuming the initial condition is at a finite distance from ∂W .
Finally, the Preact.(x) probability is written as Preact.(x) = q+(x) q−(x), thus

Preact.(x) = q+(x)
(
1− q+(x)

)
. (4.18)
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Iso-committor hypersurfaces – defined as the set of points for which q+(x) = q̄,
with q̄ ∈ (0, 1) – provide a particularly useful foliation of the configuration space.
To see this, let us first consider a generic hypersurface ∂S (not in general an iso-
committor one) and compute the probability p∂S(x) that a reactive trajectory crosses
it at some point x ∈ ∂S. This can be written as the probability density that
any piece of the ergodic trajectory (reactive or not) visits the point x (i.e. the
Gibbs distribution), times the probability Preact.(x) for such piece of trajectory to
be reactive:

p∂S(x) =
1

Z∂S
e−βU(x) Preact.(x), (4.19)

where the normalization factor is defined by the surface integral Z∂S =
∫
∂S dσq

+(x) (1−
q+(x)) e−βU(x).

Let us now specialize on case in which ∂S is some iso-committor hyper-surface
defined by q+(x) = q̄. Then Eq. (4.18) implies

p∂Sq̄(x) =
1

Z∂Sq̄
e−βU(x) Z∂Sq̄ =

∫

∂Sq̄

dσ e−βU(x). (4.20)

Therefore, the probability that a reactive trajectory crosses an iso-committor sur-
face at some point x coincides with the equilibrium probability restricted to this
surface. We emphasize that this result establishes a highly non-trivial relationship
between probability densities defined in equilibrium and dynamical conditions, and
identifies the iso-commitor function as the ideal reaction coordinate. For this reason
q+(x) provides an idal definition of reaction coordinate, i.e. of a one-dimensional
projection of the reaction trajectory, because on the hyperplane locally orthogonal
to the tangent of q(x) the distribution of points is by definition at equilibrium. More
generally, a ”good” reaction coordinate can be defined as any collective variable ξ(x)
which parameterizes the committor, i.e for which

q+(x) = q+[ξ(x)]. (4.21)

4.2.2 Transition density distribution and transition current

The ergodicity assumption of TPT can be exploited to define a time-independent
distribution which measures the probability for transition paths to visit a specific
configuration x. In mathematical terms, given an arbitrary function F (x) and de-
noting with hR(x), hP (x) and hΩT (x) as the characteristic functions of the reactant
state, product state and transition region, then mT (x) is defined by the following
equality

lim
T→∞

∫ T/2
−T/2 dτ F [x(τ)] hR[x(t−(τ))] hP [x(t+(τ))] hΩT [x(τ)]
∫ T/2
−T/2 dτ hR[x(t−(τ))] hP [x(t+(τ))] hΩT [x(τ)]

≡
∫

dx F (x) mT (x)(4.22)

To explicitly evaluate mT (x) we make use again of the fact that to the probability
that any piece of ergodic trajectory (reactive or not) visits configuration x at time t
corresponds to the Gibbs distribution times the probability for trajectories passing
at x to be reactive, i.e.

mT (x) =
1

ZT
e−βU(x) q+(x) (1− q+(x)), (4.23)
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where ZT is the appropriate normalization factor: ZT =
∫

ΩT
dxe−βU(x) q+(x) (1 −

q+(x)).

The transition probability density mT (x) carries information about the config-
urations in which the system is most likely to be found while it is performing a
transition. The complementary information about the reaction kinetics is encoded
in the so-called transition current JT (x), a 3N -dimensional vector field which pro-
vides the flux of all transition paths across arbitrary hyper-surfaces ∂S which enclose
a region S of the configuration (see Fig. 1). In analogy with the transition density
mT (x), also the definition of JT (x) is based on exploiting the ergodic hypothesis:

lim
∆τ→0

lim
T→∞

1

T

∫ T/2

−T/2
dτ( hS [x(τ)] hΩ/S [x(τ + ∆τ)]− hΩ/S [x(τ)] hS [x(τ + ∆τ)]) hR[x(t−(τ))] hP [x(t+(τ))]

≡
∫

∂S
dσ(x) n̂(x) · JT (x). (4.24)

In this equation, hS(x) is the characteristic function associated to the region S of
configuration space enclosed by the hyper-surface ∂S, Ω/S is its complementary
region of configuration and n̂(x) is a unit-norm vector orthogonal to the surface
∂S at point x (see Fig. 1). Like the transition probability density mT (x), also the
transition current can be written in a form which involves the Gibbs distribution
and the committor funciton:

JT (x) = D∇q+(x)
e−βU(x)

Z
(4.25)

The proof of this equation is too involved to be reported here, and can be found e.g.
in Ref. [?].

4.3 Potential of Mean-Force

A possible approach which tries to address the questions listed in the previous
paragraph follows from exploiting (or boldly assuming) a separation of time scales.
For example, the dynamics of the water molecules takes place at a significant shorter
time scale that of the torsional angles in the chain, which in turn is much slower
than the vibrational dynamics of the bond lengths, and so on. In the presence of
separation of time scales, it is useful to introduce the notion of reaction coordinates.
While the rigorous definition of reaction coordinate is still a matter of scientific
debate, here we shall regard them as collective variables which (i) can be considered
order parameters and (ii) evolve according to a dynamics significantly slower than
that of all other degrees of freedom in the system. If this is the case, then for each
value of the reaction coordinate, the remaining degrees of freedom can be considered
as equilibrated.

The knowledge of the system’s reaction coordinates paves the way to an effective
”low-energy” coarse grained description, defined in terms of a set of ”slow” degrees
of freedom. This can be done by averaging out the effect of the ”fast” degrees of
freedom, which are expected to be distributed with Boltzmann. For example, the
gyraton radius of a polymer is smaller in the collapsed phase than it is in the coil
phase, thus provides a decent order parameter. Assuming it is also a slow variable,
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we can regard it as a reaction coordinate for studying the collapse of a polymer in
a bad solvent.

As the temperature (or the concentration of some denaturing agent such as urea)
is increased, one expects Rg to undergo a drastic increase and reach its equilibrium
value in the denatured state. Similarly, trajectories connecting different collapsed
configurations must have comparable gyration radius, while denaturation trajecto-
ries will contain a drastic change in Rg.

Let us now be more quantitative. Let the entire molecule-solvent system be
described by a Hamiltonian H(p, q). At equilibrium, the distribution of generalized
coordinates and momenta characterizing the position of the molecule in phase-space
will obey Boltzmann’s law

P(p, q) = const× exp

(
− 1

kBT
H(q, p)

)
, (4.26)

where the constant is a normalization factor. Let us now l1, ...lNl be a set of reaction
coordinates defined in terms of the Hamiltonian variable by the relationships

li = fli(p1, q1, ...., pN , qN ) (4.27)

We introduce the free energy as a function of l1, ..., lN , F (l1, ..lNl):

exp (−F (l1, ..lNl)/kBT ) =

∫
d3Nq d3Np exp

(
− 1

kBT
H(q, p)

)

×
Nl∏

i=1

δ[li − fli(p1, q1, ...., pN , qN )] (4.28)

If l1, ..., lN are order parameters, they can be used to identify the thermodynam-
ical state. For example, in Fig. () we

For example, macromolecules are usually solvated in water, which can be con-
sidered as a thermalized heat bath. The collisions with the water molecules occur at
a rate of other order one every few fractions of ns, i.e. quite faster than the typical
time scale associated with the conformational changes of the system — which is of
the order of few ns—. Such collisions can subtract or inject energy in the molecule.
If the kinetic energy per degree of freedom of the molecule is much larger than the
thermal energy kBT of the heat bath, the atoms in the molecule will preferentially
loose energy, getting cooler. On the other hand, if the initial kinetic energy of the
atoms in molecule is much smaller than the thermal energy kBT , the atoms will on
average increase their energy by colliding with the solvent. In both cases, after a
transient regime, a complete thermal equilibrium will be reached. and H(q, p) is the
Hamiltonian.

The analysis of the thermodynamics based on the choice of reaction coordinates
does not entirely settle the questions we started from. In fact, the choice of the
reaction coordinate is somewhat ambiguous and the outcome of the analysis may
depend on such a choice. On the other end, the selection of the set of relevant
reaction coordinate can be guided by physical intuition. Let us now discuss an
example of the application of these concepts to the study of the thermodynamics of
the beta hairpin presented in the left panel of Fig. (??). In this context, one may
introduce the reaction coordinates the gyration radius Rg and the value of the angle
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at the turn φ. The values of Rg and φ is expected be smaller in the folded state than
in the coil state. The right panel displays the corresponding free energy F (Rg, φ)
evaluated in some model. Clearly, this model predicts a unique thermodynamically
stable state, at room temperature. Repeating this calculation at larger temperatures
one may be able to reconstruct the structure of phase diagram.

There is of course no restriction to the number of reaction coordinates which can
be used. In particular, one can apply the same construction to integrate out only
the solvent degrees of freedom and obtain a microscopic description of the system
in terms of the molecule internal coordinates only. In this case, let us denote with x
the set of generalized coordinates specifying the configuration of the protein and y
be the set of generalized coordinates of the water molecules. The equilibrium ther-
modynamics of the molecule-solvent system is completely contained in the partition
function

Z(T ) =

∫
d3Nxx d3Nyy e

− 1
kBT

U(x,y)
, (4.29)

where Nx (Ny) is the number of molecule (water) generalized coordinate. The
probability of finding the protein in a given configuration x̂ is then given by

e−G(x̂)/kBT =

∫
d3Nxx d3Nyy e

− 1
kBT

U(x,y)
δ(x− x̂) =

∫
d3Nyy e

− 1
kBT

U(x̂,y)
. (4.30)

In this context, the free energy F (x̂) is sometimes called the potential of mean force.
The name comes from the fact that the differentiation of F with respect to x leads
to

−∇iG(x) = −
∫
d3Nxx d3Nyy ∇iU(x, y)e

− 1
kBT

U(x,y)

∫
d3Nxx d3Nyy e

− 1
kBT

U(x,y)
= 〈Fi(x)〉 (4.31)

The function −∇iG(x) represents therefore the mean force acting at the configura-
tion x, when the effect of the solvent is averaged out.
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Chapter 5

Statistical Computing for
Complex Systems

In Chapter 3, we have introduced a theoretical framework to describe stochastic pro-
cesses in high dimensional configuration space. We have also seen how Markov State
Models provide a rigorous low-resolution representation of the complex dynamics in
high-dimensional configuration spaces. In this Chapter, we tackle the problem of
how extracting information from huge data set obtained integrating the dynamics
of high-dimensional complex system.

One of the problem we tackle consists in explicitly constructing the MSMs repre-
sentation starting from an underlying microscopic dynamics. The main issue there
is finding the Markov states using the information available from simulation data.
In low dimensional spaces (say, in 1D or 2D) this is a straightforward task. One
simply needs to plot the frequency histogram of the configurations visited by long
ergodic trajectories. High density peaks correspond to Markov States. Then the
kinetic matrix can be constructed by counting the number of transition per unit
time from different states.

In high-dimensional spaces, however, the same logical construction is very far
from trivial, because of two main technical problems: on the one hand, in the pres-
ence of thermal activation transitions are exponentially suppressed, and simulations
may not be able to record relevant events (this is generally referred to as the sam-
pling problem). In addition, in the very high-dimensionality limit, any finite data
set is effectively infinitely sparse and the distance between points in configuration
space tends to infinity. As a result, ergodicity is always badly broken, and the prob-
lem arises of how to extract relevant kinetic and thermodynamical information in
the absence of it.

Fortunately, finite data set often do not evenly cover the entire configuration
space. For example, in macromolecules, because of steric constraints and bond con-
straints, molecular data at finite statistics may effectively distribute along lower
dimensional curved manyfolds (up to small thermal noise). Following this view, one
may think of ways to project onto a smaller set of (potentially curvilinear) coordi-
nates which are relevant for the slow dynamics and then use these low-dimensional
representations to identify Markov States and the associated dynamical processes.

This quest raises the challenge of finding rigorous dimensionality reduction tech-
niques for data sets representing stochastic dynamics in high dimensional datasets.

65
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This problem often crosses with that of navigating free energy landscapes of complex
systems and using this information to infer the structure of the manyfold embedded
in configuration space where the dynamics effectively takes place.

Once a satisfactory low-dimension representation has been achieved, the next
challenge consists in finding reliable ways of clustering the data, in order to recover
regions of high density, which are can identified with Markov States. Finally, the last
conceptual steps consists in analyzing the transitions in the trajectories in order to
compute the rates between the states. Only after all these steps have been achieved,
then the microscopic dynamics can be represented in terms of a network were the
directed edges between the nodes are determined by the transition rates between
the Markov States.

In the following section we present a brief introduction to how is it possible to
tackle all of these problems.

5.1 Diffusion Distance

Let us address the problem of providing a definition for an ideal low-dimensionality
representation for the stochastic dynamics of some complex system. To this end,
we shall assume that the system’s dynamics obeys a Fokker-Planck equation with
a decoupling of relaxation time scales, i.e. a gap between soft and hard modes.
In this case, it is key to introduce a norm which identifies how quickly diffusion
can connect two configurations x, y. This is done through the notion of diffusion
distance (sometimes called kinetic distance):

dτ (x, y) =

√∫
dz(P (z, τ |x)− P (z, τ |y))2

1

π(z)
(5.1)

where π(x) = 1
Z e
−βU(x) is the Boltzmann’s distribution. This equation, in fact

defines a whole family of norms, parametrized by the (short) time scale τ . dτ (x, y)
is zero any time a stochastic dynamics initiated from the two configurations x and
y converges to the same distribution within a time scale τ . In other words, if x and
y are in the same basing dτ vanishes as long as τ is chosen longer than the typical
relaxation time within the basin. Conversely d(x, y) remains finite any time x and
y belong to kinetically separated states, with interconversion time t� τ .

After performing the spectral decomposition of Eq. (5.1) and exploiting the
orthogonality relationship

∫
dyLn(y)Rm(y) = δnm one arrives to:

dτ (x, y) =

√√√√
M−1∑

n=1

e−2λnτ (Ln(x)− Ln(y))2 (5.2)

where M − 1 is the label associated to the largest eigenfrequency below the gap. In
the limit of large gap, e−2λnτ ∼ 1, thus the diffusion distance reduces to a standard
Euclidean distance, in the space of collective variables represented by the lowest M
left-eigenvalues of the Fokker-Plank operator. In this sense, they represent the ideal
global coordinates. The problem now arises on how is it possible to obtain estimates
of these collective variables using a finite and sparse simulation data set.

To this end, we shall begin by introducing some useful mathematical definitions,
which will be then used to obtain estimates for Ln(x).
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5.1.1 Mathematical Prologue

We consider a stochastic dynamics defined by a general Fokker-Plank equation

∂tP (x, t) = −ĤFPP (x, t) (5.3)

and let P (x, t|y, t) be the corresponding Green’s function.
We now define two convenient Hilbert spaces. The first, denoted with L2

π, cor-
responds to the linear space of square-integrable functions L2, equipped with the
following inner product:

〈a|b〉π =

∫
dxa(x)b(x)π(x), (5.4)

where π(x) = 1
Z e
−βU(x) is the Boltzmann’s measure. The second, denoted with

L2
π−1 the linear space of square-integrable functions L2, equipped with following

inner product:

〈a|b〉π−1 =

∫
dxa(x)b(x)

1

π(x)
, (5.5)

Let us now define some useful operators on these two Hilbert spaces. In partic-
ular, we focus on the following operators:

Propagating Operator P̂τ : P̂τρ(x, t) =

∫
dyP (x, t+ τ |y, t)ρ(y, t) (5.6)

Transfer Operator T̂τ : T̂τρ(x, t) =
1

π(x)

∫
dy P (x, t+ τ |y, t) ρ(y)π(y)

(5.7)

It is important to note that, since the Fokker-Planck dynamics obeys detailed bal-
ance, the propagating operator is Hermitian in Lπ−1

2 :

〈v|(P̂τu)〉π−1 =

∫
dy v(y)

1

π(y)

∫
dxP (y, t+ τ |x, t)u(x)

=

∫
dy v(y)

∫
dx
P (x, t+ τ |y, t)

π(x)
u(x)

= 〈(P̂ v)|u〉π−1 (5.8)

The propagating and transfer operators can be formally written in terms of the
Forkker-Plank operator and the backward Kolmogorov operator. Indeed, from Eq.
(5.3) it immediately follows

P̂ τρ(x, t) = e−ĤFP τρ(x, t). (5.9)

To obtain a similar expression for T̂ τ we note that if ρ(x, t) is a solution of the
Fokker-Planck equation, then the combination

u(x, t) = ρ(x, t)/π(x) (5.10)

is a solution of the so-called backward Kolmogorov equation,

∂tu(x, t) = −Ĥ†FPu(x, t), (5.11)
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where the adjoint of the Fokker-Planck operator,

Ĥ†FP = D(∇2 − β∇U∇) (5.12)

is called the backward Kolmogorov operator. The proof of (5.11) can be immediately
obtained by direct inspection. Then,

T̂ τ = e−Ĥ
†
FP τ . (5.13)

The relationship between the propagator and transfer operators follow reflects
the fact that they are related by a unitary multiplicative operator M̂ :

M : L2
π−1 → L2

π : M̂ρ(x) = π(x)ρ(x) (5.14)

Indeed,

T̂τρ(x, t) =
1

π(x)

∫
dyP (x, t+ τ |y, t) ρ(y)π(y)

=
1

π(x)

∫
dyP (x, t+ τ |y, t)M̂ ρ(y)

= M̂−1

∫
dyP (x, t+ τ |y, t)M̂ ρ(y), (5.15)

from which, we get the operator equation T̂τ = M̂−1P̂τM̂ .

It is easy to prove that this relation implies that T̂τ and P̂τ share the same
spectrum, and that the eigenfunctions |li〉 transfer operator are related to those |ri〉
of P̂τ by the relation |li〉 = M̂−1|ri〉. Indeed,

T̂τ |li〉 = λi|li〉 ⇒M−1P̂τM̂ |li〉 = λi|li〉 ⇒ P̂τ (M̂ |li〉) = λi (M̂ |li〉). (5.16)

Then, defining |ri〉 = M̂ |li〉, we obtain

P̂τ |ri〉 = λi|ri〉. (5.17)

Finally, from the expressions (5.9) and (5.13), recalling the fact that the spectrum
of ĤFP is non negative, it follows that λ0 = 0 > λ1 > . . ..

Variational Estimate of the Diffusion Distance

Let us now return to our original problem of estimating the diffusion distance be-
tween configurations. We recall that, due to Eq. (5.2), this problem is basically
equivalent to finding approximation for the left eigenstates of the Fokker-Plank
operator or equivalently, in view of Eq. (5.13), the eigenstates of the transition
operator T̂ τ . Equipped with the mathematical notions we have just introduced, we
can now tackle this problem.

Let us consider the following matrix element:

Gf (τ) ≡ 〈f |T̂τ |f〉π (5.18)

=

∫
dx

∫
dyf(x)f(y) P (x, τ |y) π(y) (5.19)
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So, Gf (τ) is the time auto-correlation of the function f(x), along stochastic trajec-
tories evolving according to the Fokker-Planck dynamics. We note that, in practice,
Gf (τ) can be estimated directly from simulations using the central limit theorem:

Gf (τ) ' 1

N

N∑

k=1

f [x(tk)] f [x(tk + τ)]. (5.20)

Let us now consider a specific choice for the function f(x), namely on in which
it coincides with an eigenstate of the Transfer operator, f(x) = li(x). In this case,
for any given choice of the lag-time τ , the time autocorrelation function Gli(τ) is
simply the corresponding eigenvalue λi:

Gli(τ) = 〈lτi |T̂τ |lτi 〉 = λτi (5.21)

where we have emphasized that the eigenstates and the eigenvalues parametrically
depend on the lag-time τ .

Let us assume now we have fund some approximation (proxy) l̃τ1(x) of the 1−st
non-trivial eigenstate lτi (x) of T̂ ( the ground-state is trivially λτ0(x) = 1). This
proxy is requested to obey the correct orthogonality condition to lτ0(x), with respect
to the 〈〉π inner product:

〈lτ0 |l̃τi 〉π = 0 (5.22)

In practice, this implies that lτ1(x) is a mean-free function, according to the Boltz-
mann’s measure:

〈l̃τ1 |l̂τ0〉 =

∫
dxl̃τ1π(x) = 0. (5.23)

Then, it is immediate to prove the following variational bond:

Gl̃τ1
(τ) ≤ λτ1 . (5.24)

The proof is immediate: since the transfer operator is Hermitian with respect to the
〈·〉π inner product, we can Fourier decompose l̃τ1(x):

l̃τ1(x) =
∑

i

cil
τ
i (x) (5.25)

Then

Gl̃τ1
(τ) =

∑

ij

cicj〈lτi |T̂τ |lτj 〉π =
∑

ij

cicjλ
τ
i δij =

∑

i

c2
iλ

τ
i ≤ λτ1

∑

i

c2
i = λτ1 . (5.26)

Let us now discuss the implication of this variational bound. To this end, let
us suppose to find a basis set formed by N orthogonal functions. We recall that
orthogonality with the given scalar product corresponds to the condition of being
uncorrelated with respect to the realization of the stochastic process:

〈χn|χm〉π = 0∫
dxχn(x)χm(x)π(x) =

1

N

∑

j

χn[x(∆tj)]χm[x(∆tj)] (5.27)
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Let us now compute the correlation matrix:

T̃ τnm = 〈χn|T̂τ |χm〉 (5.28)

Microscopic reversibility implies that this matrix must be symmetric. When esti-
mated with stochastic descriptors at finite statistics, the matrix is no longer sym-
metric but may be symmetrized ”by hand”:

T̃ τnm →
1

2

(
T̃ τnm + T̃ τTnm

)
(5.29)

Let us now imagine to diagonalize this matrix:

∑

n

T̃ τnm bm = λ̃τnbn, (5.30)

Since the T̃ τ matrix is an approximate representation fo the transfer operator in the
truncated space of orthogonal functions {χn}n, its eigenvectors {bmk } yield a proxy
of the transition operator eigenfunctions:

l̃τn(x) '
∑

k

bmk χ
τ
m(x). (5.31)

In practical situations, however, the functions χτn are simply collective variables
guessed upon chemico/physical intuition. As such, they are usually not in general
mutually orthogonal. In this case, one needs to solve the generalized eigenvalue
problem:

∑

m

T̃nmbm = λτn

(∑

k

Snkbk

)
(5.32)

where Snm = 〈χn|χm〉.
Once the eigenvalues and eigenstates have been obtained, then the inequality

(5.26) implies the first eiqenvalue λ̃τ1 can be used as variational parameter to esti-
mate the goodness of the approximation. This is exploited in the so-called Time
Independent Component Analysis (TICA) algorithm, which seeks the best linear
combination of input features approximating the eigenstates of the transfer opera-
tor, thus the collective coordinates required to define the diffusion distance (5.2).

An illustrative example (taken from Wikipedia) of the MSM obtained from the
analysis of massively distributed molecular simulations of protein folding (based on
Folding@home1 platform) is provided in Fig. (5.1.1).

5.1.2 Markov State Model Construction

Let us finally address the question of how the spectral methods discussed so far can
be used to construct a Markov State Model (MSM) representation of the stochastic
dynamics of a complex system. As a paradigmatic reference problem, we imagine to
developing such a model by analyzing the result of molecular dynamics simulations
of some complex macromolecular system. The following summary is closely taken

1https://foldingathome.org/
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Figure 5.1: Folding@home uses MSMs, like the one diagrammed here, to model the
possible shapes and folding pathways a protein can take as it condenses from its
initial randomly coiled state (left) into its native 3D structure (right). (Figure and
caption taken from Wikipedia)

from a recent review paper[20] introducing a special issue of the Journal of Chemical
Physics, specidically devoted to this problem.

Most MSM construction approaches proceed by a sequence, or pipeline, of data
processing steps that typically includes the following:

1. Featurization: The MD coordinates are transformed into a set of featuring
functions R1(x), R2(x), . . . , RN (x). Features are chosen to represent the es-
sential dynamics of the system, i.e. the assumption is that the lowest-lying
eigenstates of the backward Kolmogorov operator depend on the configurations
through these function, i.e. Ln(x) = Ln(R1(x), . . . , RN (x)). As an example,
for simulations of protein dynamics example of features may include proteins
inter- residue distances, the contact maps, or torsion angles

2. Dimensionality reduction: Spectral methods developed in the previous sections
is used to reduced the dimensionality to typically 2-100 slow collective variables
(CVs), e.g. corresponding to the lowest left-eigenstates of the Kolmogorov
operator.

3. Discretization: The low-dimensional space constructed at the previous point
may be discretized by clustering the projected data, typically resulting in 100-
1000 discrete “microstates.”

4. MSM estimation: A transition matrix or rate matrix describing the transition
probabilities or rate between the discrete states at some lag time τ .

5. Coarse-graining: In order to get an easier interpretable kinetic model, the
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MSM from step 5 is often coarse-grained to a few states (for an example of
systematic, renormalization group based coarse graining, see [21].

5.2 Diffusion Maps

Let us now discuss a closely related spectral method which is often used for inter-
pretation and feature extraction of large data sets and also used in the framework
of molecular simulations.

The basic idea behind this approach is to construct a posteriori an artificial
random walk on our points so to recover information about the dynamical process
that generated them. To this purpose we introduce the following objects2

• An isotropic diffusion kernel

Kε(xi, xj) =
1√
4π

exp

(
−‖xi − xj‖

2

4ε

)
(5.33)

where || . . . || is the Euclidean distance in configuration space and ε is a fixed
time scale. This kernel introduces some notion of affinity between points in
configuration space and we have chosen an exponentially decaying function
relying on the idea that, in many applications, only high correlation values
correspond to meaningful information on the data set.

• A normalization

pε(xi) =
N∑

n=1

Kε(xi, xn)

. We will show that this is an approximation of the true probability distribu-
tion p(x), for small values of ε.

• A new symmetric kernel

K̃ε(xi, xj) =
Kε(xi, xj)√
pε(xi)pε(xj)

(5.34)

and another normalization factor

dε(xi) =
N∑

n=1

K̃ε(xi, xn) (5.35)

2Most of the literature on Diffusion Map and related schemes is being produced by mathe-
maticians. In their community the conventional notation for Green’s function and conditional
probabilities is one in which the initial condition is written in leftmost position, followed by the
final position, e.g. Pt(x, y) = Prob.(x → y). On the other hand, physicists tend to adopt the
opposite notation, in analogy with the bra-ket notation of quantum mechanics. Indeed, the propa-

gator Kt(xf ;xi) = 〈xf |e−i
i
~ Ĥt|xi〉 represents the amplitude to perform a transition from xi to xf

in time t. Throughout these notes, we have been following the physicists’ notation. However, in
this section, we shall switch to the matematicians’ convention, to facilitate the reader in making
contact with the existing literature.
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• A Markov matrix

Mε(xi|xj) =
K̃ε(xi, xj)

dε(xi)
, (5.36)

which satisfies the sum rule
∑N

j=1Mε(xi|xj) = 1. Matrices that satisfy this
condition are referred to as right stochastic matrices. Notice that we used the
notation for conditional probability, but since M is meant to be a backward
kernel, the probability is conditioned on events which happen later in time.
3 Therefore, the sum rule simply translates into conservation of probability,
namely the total probability to end up at xj starting from any other point is
1.

• The evolution operator T, whose kernel is our Markov matrix. Its action on
test functions is, by definition,

T [ϕ] (xj) =
N∑

j=1

M(xi|xj)ϕ(xj) (5.37)

Now, we examine the limit N → ∞, that leads to a diffusion process contin-
uous in space but discrete in time. Exploiting the assumption that our data set
was obtained by N realization of a stochastic process defined a given probability
distribution, we can rely on the Central Limit theorem:

lim
N→∞

1

N

N∑

n=1

g(xn) = E[g(x)] =

∫
g(x) p(x)dx (5.38)

This allows us to convert the sums in our discrete definitions into integrals with
measure p(x), leading to

• A continuous formulation of the normalization condition,

pε(x) = N

∫
Kε(x, z) p(z)dz. (5.39)

• A new representation for the symmetric kernel:

K̃ε(x, y) =
Kε(x, y)√
pε(x)pε(y)

, (5.40)

and a continuous normalization factor,

dε(x) = N

∫
K̃(x, z) p(z)dz, . (5.41)

• In the new formulation the Markov matrix elements are

Mε(x|y) =
K̃ε(x, y)

dε(x)
, (5.42)

and the associated right stochasticity condition reads:
∫
M(x|y) p(y)dy = 1. (5.43)

3M represents the probability for the system that is eventually found in configuration xj arrives
there starting from point xi
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• In the continuous formulation, the evolution operator is now defined to act
upon test functions as follows:

T [ϕ] (x) = N

∫
M(x|y)ϕ(y) p(y)dy. (5.44)

To appreciate the physical meaning of what we are doing, let us specialize on the
case in which our points are sampled from an equilibrium probability distribution.
We will see that pε(x) will be soon proven to become the true probability density
plus terms of order ε.

In the following, we shall uncover the relation between our evolution operator T
and he backward Kolmogorov operator:

lim
ε→0

1− T
ε

ϕ(x) = β∇U · ∇ϕ(x)−∇2ϕ(x) = Hb ϕ(x). (5.45)

This result implies that, by diagonalizing the matrixM(xi|xj) we can find an approx-

imation for eigenvalue and eigenfunctions of Ĥb = Ĥ†FP , which bear the information
about the relevant slow dynamics in the system and the diffusion distance.

To provide the proof of Eq. (5.45), let us introduce the continuous time limit,
ε → 0. Since we are also assuming the limit of large number of points ( N → ∞
) , we need to specify the relative scaling between ε and N . We choose ε ∼ 1

N2 ,
which corresponds to assuming that the time intervals required to diffuse between
nearest-neighbor points in our dataset scales like the square of their distance, i.e.
the typical law of Brownian dynamics.

The next step towards proving Eq. (5.45) is to show that pε(x) approximates
the equilibrium distribution p(x), to leading order in ε, i.e.

pε(x) = p(x) + ε∇2p(x) +O(ε2). (5.46)

To this end, we perform a Fourier transform of both sides of Eq. (5.39) Recalling
that the kernel is a Gaussian function (see Eq. (5.33)), we find:

pε(q) = e−q
2ε p(q) =

(
1− q2ε

)
p(q) +O(ε2). (5.47)

Eq.(5.46) follows to anti-transforming back, from momentum to coordinate space.

Let us now plug this result into the expression for the normalization constant
dε(x):

dε(x) = N

∫
K̃(x, y) p(y)dy = N

∫
K(x, y)√
pε(x)pε(y)

p(y)dy

' N

∫
K(x, y)√

p(x)
(

1 + ε∇
2p(x)
p(x)

)
p(y)

(
1 + ε∇

2p(y)
p(y)

) p(y)dy

' p−
1
2 (x)

(
1− ε

2

∇2p(x)

p(x)

)
N ×

(∫
K(x, y)p

1
2 (y) dy − ε

2

∫
K(x, y)p

1
2 (y)
∇2p(y)

p(y)
dy

)
. (5.48)
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Now, at first order in ε we have

N

∫
K(x, y)p

1
2 (y) dy ' p 1

2 (x)

(
1 + ε

∇2p
1
2 (x)

p
1
2 (x)

)

ε

2
N

∫
K(x, y)p

1
2 (y)
∇2p(y)

p(y)
dy ' ε

2
p

1
2 (x)
∇2p(x)

p(x)
.

In conclusion, we find

dε(x) = 1 + ε

(
∇2p

1
2 (x)

p
1
2 (x)

− ∇
2p(x)

p(x)

)
+O(ε2). (5.49)

Finally, we are in a condition to examine the action of the evolution operator T

T [ϕ] (x) = N

∫
M(x|y)ϕ(y) p(y)dy =

1

dε(x)
N

∫
K̃(x, y)ϕ(y) p(y)dy. (5.50)

After poerforming the same steps that lead to (5.49), we find

T [ϕ] (x) =
ϕ(x)

dε(x)


1 + ε



∇2
(
ϕ(x)p

1
2 (x)

)

ϕ(x)p
1
2 (x)

− ∇
2p(x)

p(x)




+O(ε) (5.51)

Now plugging in the expression (5.49) for dε(x), we obtain:

T [ϕ] (x) = ϕ(x) + ε



∇2
(
ϕ(x)p

1
2 (x)

)

p
1
2 (x)

− ϕ(x)
∇2p

1
2 (x)

p
1
2 (x)


+O(ε2)

= ϕ(x) + ε

(
2∇ϕ(x)∇p 1

2 (x)

p
1
2 (x)

+∇2ϕ(x)

)
+O(ε2).

(5.52)

We are ready to compute the generator of this transformation, whose action on test
functions is

lim
ε→0

1− T
ε

ϕ(x) = −2∇ϕ(x)∇p 1
2 (x)

p
1
2 (x)

−∇2ϕ(x). (5.53)

Let us now specify on the case in which the equilibrium probability distribution
is the Boltzmann’s measure, p(x) = e−βU(x). Plugging this into (5.53) we finally get

lim
ε→0

1− T
ε

ϕ(x) = β∇U · ∇ϕ(x)−∇2ϕ(x) = Hb ϕ(x), (5.54)

thus proving Eq. (5.45).
Therefore, the diffusion map formalism enables an estimate for the eigenvectors

of the Hb operator, given a sample of points distributed according to some equilib-
rium density p(x). Given a data point x̄, one obtains a corresponding set of values
L1(x̄), L2(x̄, . . .. Therefore, it establishes a non-linear mapping of the data set onto
a linear subspace in which the Euclidean distance corresponds to the diffusion dis-
tance (see Eq. ()). In this representation, points are close if the system can rapidly
diffuse between them. This feature yields the information about the presence of
metastable states (basis) and qualitative information about the reaction process.

An illustrative example (taken from Wikipedia) is provided in Fig. (??).
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Figure 5.2: Given non-uniformly sampled data points on a toroidal helix (top),
the first two Diffusion Map coordinates are plotted (bottom). The Diffusion Map
unravels the toroidal helix recovering the underlying intrinsic circular geometry of
the data. (Figure and caption taken from Wikipedia)

5.3 Geometric Methods

The clustering and data representation methods sketched in the previous section
rely on spectral properties of the stochastic dynamics, thus are applicable only to
systems obeying the microscopic reversibility condition and, at least in principle, dis-
playing a gap in the spectrum of relaxation time scales. In many situations, however,
these methods are either not applicable, or are not reliable. For example, in order
to lower the computational costs of exploring energy landscapes, many algorithms
include artificial biasing forces which violate the microscopic reversibility condition.
Clustering of those data cannot be performed using r any spectral method, since
precisely the purpose of these algorithm is that of reducing the gaps to speed up
relaxation dynamics. In addition, at least in principle, the variational estimates
used to perform dimensionality reduction in TICA may introduce uncontrolled sys-
tematic errors. Finally, even relying on microscopically reversible sampling, the
spectrum of the Fokker Planck operator for the underlying physical system may not
contain significant gaps, thus posing theoretical concerns about the very relevance
of spectral projection-based approaches.

In this section, we illustrate a different theoretical framework to perform di-
mensionality reduction and analysis of large dimensional data sets. This particular
scheme was developed by Laio and co-workers [24, 25]. These methods do not rely
on any specific spectral property, but rather are derived by combining differential
geometry and statistics. As a results, these clustering schemes apply to a broader
set of problems and approaches.
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5.3.1 Intrinsic Dimensionality

We have already discussed how the issue of dimensionality reduction is related to the
fact that most of the time high dimensional datasets contain most of the information
within a lower dimensional manifold.

A key issue is therefore that of estimating the dimensionality of the embedding
manifold, often called Intrinsic Dimensionality (ID). For example, in the case of
samples generated by molecular dynamics simulations, the real dimensionality of
the data set is obviously 3N (where N is the number of atoms). However, due to
interactions (e.g. topological constrains induced by covalent bonds or steric clashes
between neighboring atoms) most the directions are prohibited, thus the directions
along the system can move significantly are much fewer than 3N . Then, an estima-
tor of the ID should give the number of soft directions characterizing the effective
dynamics of the system. Here, we sketch the derivation of an algorithm derived by
Laio and co-workers which enables to efficiently solve this task

Let us consider a point in the dataset (arbitrarily identified by the index i = 0)
and the list of it first k nearest neighbors. Let r1, r2, . . . , rk be a sorted list of their
distances from the reference point. For example, r1 is the distance between the point
i = 0 and its nearest neighbor, r2 its distance with the second nearest neighbor, and
so on.

Let us consider the hyper-spherical volume enclosed by two successive neighbors
l and l + 1 setting as centre of the hyper-spheres the reference point i = 0:

∆νl = ωd(r
d
l+1 − rdl ), (5.55)

where ωd is the volume of a unitary radius hypersphere in d dimension, i.e.

ωd =
πd/2

Γ
(
d
2 + 1

) (5.56)

It is possible to show that, in the case of uniform distribution of density ρ, the
values of the shell volume ∆ν are distributed according to

P (∆v ∈ [ν, ν + dν]) = ρe−ρνdν (5.57)

Let us then consider two shells, ∆νi and ∆νi and take the ratio R = ∆νi
∆νj

. The

values of R are distributed according to:

P (R ∈ [R̄, R̄+ dR̄] =

∫ ∞

0
dνj

∫ ∞

0
dνi ρ

2e−ρ(ν1+ν2) χ[R̄,R̄+dR̄]

(
νi
νj

)

= dR̄
1

(1 + R̄)2
, (5.58)

where we have denoted with χA(x) the characteristic function of the set A, i.e.

χA(x) =

{
1 x ∈ A
0 otherwise

(5.59)

Hence, in any dimension and for any choice of i and j, the probability density
function of values of the ratio R, g(R), is given by:

g(R) =
1

1 +R2
(5.60)
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The idea is to estimate from data a quantity which depends on g(R) and on the
dimensionality, thus by computing this quantity and knowing the exact expression
for g(R) one obtains an estimate of the effective manyfold’s dimensionality over
which the points are (locally) uniformly distributed. In order to assess such a local
information, we focus on the neighborhood of the point i = 0, i.e. we choose
i = 1 and j = 2. This means we are interested in comparing the ratio of volume
of hyperspheres between the 1st and 2nd and the 2nd an 3rd nearest neighbors,
R = ∆ν2

∆ν1
. We then compute the cumulative distribution function of

µ =
r1

r2
(5.61)

It is then possible to show that µ and R are related by simple geometrical relation-
ship:

R = µd − 1 (5.62)

Since the distribution of R is known, it is possible to compute the cumulative dis-
tribution of µ, F (µ):

F (µ) = (1− µ−d)χ[1,∞](µ) (5.63)

The key point here is that the cumulative distribution F (µ) depends on d but not
on the density ρ. Moreover, the following simple relation applies

− log(1− F (µ))

log(µ)
= d. (5.64)

By estimating the function on the left-hand side, one can infer the intrinsic dimen-
sionality.

5.3.2 Density Estimator

In this subsection, we discuss a point-adaptive k-nearest neighbour (PAk) estimator,
an algorithm used to compute the local value of the probability density function,
from a sparse data set. It has been developed starting from the classic k-nearest
neighbor estimator k-NN, in which the local density at a point is measured from
the volume in configuration space occupied by the k nearest neighbors of a point.
The value k to consider represents a cut-off on the length scale of ”influence” of a
single point. In the case of highly inhomogeneous data-sets, this global parameter
may induce systematic errors. Indeed, the value of k should be such that within the
k-nearest neighbors the density does not vary much. In complex cases it is difficult
to find a global value for k describing the geometry of the whole dataset.

PAk represents a development of k-NN in two important ways. First, in PAk, k
which is adapted at every point in the dataset, rather than globally fixed. Indeed,
the algorithm performs a procedure based on finding, for each point, the size of the
neighborhood in which the probability density function is constant. This way the
the optimal value of k for every point on the dataset is identified. The second im-
portant difference is that this procedure is performed in the sub-manifold of intrinsic
dimension.
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Eq. (5.57) provides the probability density that the j-th and j + 1-th define a
shell of volume νj , given a (locally) uniform density ρ. This distribution can be used
to defined the log-likelihood function of the parameter ρ, given the realizations of
the k-nearest neighbor distances from point i:

L(ρ|{ν(l)
i }l≤K) = k log ρ−

k∑

l=1

ν
(l)
i ≡ k log ρ− ρVi,k (5.65)

This function is defined in such a way that by imposing stationarity with respect to
variation of the density field ρ, δL

δρ = 0, one gets

ρ =
k

Vi,k
(5.66)

with an error ep = ρ/
√
k =

√
k/Vi,k. To be noticed that νi are computed with

respect the intrinsic dimensionality of the system. Thus, the method computes the
density by implicitly projecting the system in the lower dimensional manifold.

The error on the estimate decreases with k. On the other hand, as one increases
the size of the neighborhood (choosing larger it is more likely having density varia-
tion. The authors of the approach have proposed a way to determine an ”optimal”
value for k, which corresponds to the biggest value within which density variation
is not statistically signicant. Without entering too much in the details, they find
kopt = k̂i considering two models: one for which the density is constant from points
i until the neighbours k + 1 and one for which density at point i is different with
respect to the one at point k + 1. Then, the log-likelihoods of the two models are
compared by taking the difference, Dk. If Dk is larger than a threshold Dthr then
two models are distinguishable, with an accuracy depends on the choice of Dthr.
The optimal value for k is the biggest value such that it holds Dk < Dthr.
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Chapter 6

Quantum Dynamics and
Thermodynamics in Open
Systems

In this chapter we extend to the quantum level some of the concepts and results
discussed in the previous chapters concerning dynamics in open environment. This
problem is relevant also for applications to complex biological or organic macro-
molecular systems, where electronic excitations (let them be electrons, holes or
excitons) can propagate in a molecular environment, which plays the role of a “heat-
bath”.

We first show how the path integral formalism can be used to define the quan-
tum canonical partition function of a system of non-degenerate particles (sometimes
called “Bolzmanions”). Next, we turn our attention to dynamical problems: We dis-
cuss the Feynman-Vernon path integral approach to evaluating the time evolution
of the density matrix in an open quantum system. We then provide a brief intro-
duction to the general structure of the Quantum Master equation and its Markovian
limit.

6.1 Equilibrium Dynamics and Thermodynamics

6.1.1 Path Integral Representation of the Quantum Partition Func-
tion

Let us begin by considering a quantum particle evolving according to the Hamilto-

nian Ĥ = p̂2

2M +V (q̂). We recall that the real-time quantum evolution of this system
is exhaustively described by the Feynman propagator:

K(q′′, t′′|q′, t′) = 〈q′′|e− i
~ (t′′−t′)Ĥ |q′〉

=

∫
Dq(t) e i~S[q], (6.1)

where the paths q(t) are obey the boundary conditions q(t′′) = q′′, and q(t′) = q′

and S[q] denotes the classical action evaluated along the path q(t):

S[q] =

∫ t′′

t′
dt

(
M

2
q̇2 − V [q(t)]

)
. (6.2)

81
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Let us now consider the same system in equilibrium with a thermostat at tem-
perature 1/β (we shall adopt a system of units in which kB = 1). The starting point
to define its thermodynamics is to define the partition function:

Z(β) = Tre−βH =
∑

n

e−βEn , (6.3)

where the trace is evaluated on a complete set of eigenvalues of Ĥ,

Ĥ|n〉 = En|n〉. (6.4)

Using the properties of the trace, we can represent the thermal operator e−βH on
the basis set formed by the eigenvectors of the position operator:

Z(β) =

∫
dq〈q|e−βH |q〉. (6.5)

Hence, the partition function can be represented as a periodic path integral in
imaginary time, with t′′ − t′ = −iβ:

Z(β) =

∫
dq K(q,−iβ|q, 0) =

∮
Dq(τ) e−SE [q], (6.6)

where SE [q] is the Euclidean action:

SE [q] =

∫ β

0
dτ

(
M

2
q̇2(τ) + V [q(τ)]

)
. (6.7)

and the symbol
∮

refers to the periodic boundary conditions q(β) = q(0).

Let us now discuss the evaluation of thermal averages, in the form.

〈A〉β =
1

Z(β)
Tr[Âe−βĤ ]. (6.8)

In particular, we focus on the imaginary-time correlation functions, such as e.g. the
two-point function:

〈TE [q̂(−iτ1)q̂(−iτ2)]〉β ≡
1

Z(β)
Tr[e−βĤ q̂(−iτ1)q̂(−iτ2)], (6.9)

where q̂(−iτ) is the position operator in the Heisemberg picture:

q̂(t) = eiHt q̂ e−iHt (6.10)

q̂(−iτ) = eHτ q̂ e−Hτ (6.11)

and TE [. . .] denotes the time-ordered product which operates in imaginary time.

In order to compute such correlation functions it is convenient to define a gener-
ating functional Z(β, j), which reduces to the partition function Z(β) for vanishing
source j(τ):

Z(β, j) =

∮
Dq(τ) e−SE [q]+

∫ β
0 dτq(τ)j(τ) (6.12)
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Multiple functional differentiation of this functional yields arbitrary correlation func-
tions. For example, the two-point imaginary time propagator reads:

lim
j(τ)→0

1

Z(β)

δ2Z(β; j)

δj(τ1)δj(τ2)
=

1

Z(β)

∮
Dq(τ) q(τ1)q(τ2) e−SE [q], (6.13)

i.e. precisely the path integral representation of the the two-point correlation func-
tion. We note that, using the periodicity of the paths, it follows that

〈TE [q̂(−iβ)q̂(−iτ)]〉β = 〈TE [q̂(0)q̂(−iτ)]〉β (6.14)

So far, the imaginary time variable τ has been defined in the strip τ ∈ [0, β].
On the other hand, we shall see soon that it can be defined in the larger region
τ ∈ [−β, β]. Then it is possible to define the function

∆(τ) = 〈TE [q̂(−iτ)q̂(0)]〉β, (6.15)

for any τ ∈ [0, β]. Note that, from the Eq.s (6.10) and (6.11), using the cyclic
properties of the trace, it follows that ∆(τ) is a periodic function:

∆(τ − β) = 〈T [q̂(−iτ)q̂(β)]〉β = 〈T [q̂(−iτ)q̂(0)]〉β = ∆(τ). (6.16)

6.1.2 Real-time Quantum Propagators

Our ultimate goal is that of describing in a unified picture both thermodynamical
quantities and real-time correlation functions. To this end, it proofs convenient to
introduce a set different two-point functions which will be shown to encode informa-
tion about to the spectral properties of the many-body system and the relaxation
times. Hence, let us introduce the functions:

D>(t, t′) = 〈q̂(t)q̂(t′)〉β (6.17)

D<(t, t′) = 〈q̂(t′)q̂(t)〉β, (6.18)

where, in the most general case, t and t′ denote variables in the complex plane. Note
that D<(t, t′) = D>(t′, t) and that the products of field operators q̂(t) appearing in
these function are not time-ordered.

A spectral representation of D>(t, t′) may be obtained by inserting two resolu-
tions of the identity:

D>(t, t′) =
1

Z(β)

∑

n,m

e−βEn eiβEn(t−t′) e−iβEm(t−t′)|〈n|q̂(0)|m〉|2 (6.19)

Such a representation makes it manifest that, D>(t, t′) is an analytic function within
the strip

−β ≤ =m(t− t′) ≤ 0, (6.20)

and becomes a distribution at the border of such an analytic region. Similarly,
D>(t′, t) is analytically defined in the strip

0 ≤ =m(t− t′) ≤ β. (6.21)
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Now, using the cyclicity of the trace and the fact that the thermal operator

e−βĤ can be interpreted as an imaginary time evolution operator, we obtain the
Kubo-Martin-Schwinger (KMS) relation

D>(t, t′) = Tr[e−βHeiHtq̂(0)e−iHtq̂(t′)]

= Tr[eiH(t+iβ)q̂(0)e−iH(t+iβ)e−βH q̂(t′)]

= Tr[e−βH q̂(t′)q̂(t+ iβ)]

= D<(t+ iβ, t′). (6.22)

We also note that, in the interval [0, β] one has that the Euclidean time propa-
gator defined in Eq. (6.15) is actually

∆(τ) = D>(−iτ, 0) (6.23)

Finally, for real values of t and t′ we define the time-ordered propagator:

〈T (q̂(t)q̂(t′))〉β = θ(t− t′) D>(t, t′) + θ(t′ − t) D<(t, t′) (6.24)

where T [. . .] denotes the time ordering in real time.

Time translational invariance implies that propagators D>(t, t′) and D<(t, t′)
depend only on the time different t′− t and not on t and t′ individually. As a result,
in the following we shall adopt the simplified notation

D>(t) ≡ D>(t, 0), D<(t) ≡ D<(t, 0). (6.25)

It is also convenient to introduce their Fourier transform:

D>(k0) =

∫ ∞

−∞
dt eik0tD>(t) (6.26)

D<(k0) =

∫ ∞

−∞
dt eik0tD<(t) =

∫ ∞

−∞
dt eik0tD>(t− iβ), (6.27)

The last equality has been derived using the KMS condition. It can be shown that
hermiticity of q̂(t) and time translational invariance imply thet D>(k0) and D<(k0)
are real functions of k0. From Eq. (6.18) one immediately has:

D<(k0) = D>(−k0) (6.28)

In addition, from Eq.(6.27)

D<(k0) =

∫ ∞

−∞
dt eik0tD>(t− iβ)

=

∫ ∞

−∞
dt e−βk0 eik0(t−iβ)D>(t− iβ)

= e−βk0 D>(k0), (6.29)

It can be shown that this relationship expresses a detailed balance condition.
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6.1.3 Spectral Function

Real time and imaginary propagators are entirely specified in terms of a quantity
called the spectral function, which is defined as follows

ρ(k0) ≡ D>(k0)−D<(k0) =

∫ ∞

−∞
dt eik0t 〈[q(t), q(0)]〉β (6.30)

Using the detailed balance condition (6.29) and the definition of spectral function
(6.30) one immediately finds an expression which relates directly the propagators
D>(k0) and D<(k0) to the spectral function

D>(k0) = (1 + f(k0)) ρ(k0), (6.31)

D<(k0) = f(k0) ρ(k0), (6.32)

where f(k0) = (eβk0 − 1)−1. Hence, the problem of computing the spectral function
is in fact equivalent to that of determining D>(k0) or D<(k0).

Using the spectral representation (6.19) the definition of the spectral function
(6.30) and the detailed balance condition (6.29) it is straightforward to work out a
spectral representation for ρ(k0):

ρ(k0) =
2π

Z(β)

∑

m,n

e−Enβ (δ(k0 − En + Em)− δ(k0 − Em + En)) |〈n|q(0)|m〉|2.(6.33)

This representation is quite useful as it explicitly shows that

• ρ(k0) is a real odd function: ρ(−k0) = −ρ(k0).

• ρ(k0) is positive for positive k0.

An useful sum rule for ρ(k0) can be deduced from the equal time commutation
relationship for the field q̂(t):

∫ ∞

−∞

dk0

2π
k0ρ(k0) = 1. (6.34)

To prove this relationship, let us consider the canonical commutation relationship:

[q̂(t),
d

dt
q̂(t′)]t=t′ = i (6.35)

But then
∫ ∞

−∞

dk0

2π
k0 e

−ik0t
(
D>(k0)−D<(k0)

)
= i

d

dt
(D>(t)−D<(t))

= i lim
t→t′

d

dt
〈[q(t′), q(t)]〉 = 1 (6.36)

Finally, it is instructive to consider the case of the harmonic oscillator, V =
1
2ω

2q2. In this case, the position operator can be written as:

q̂ =
1√
2ω

(
âe−iωt + â†eiωt

)
(6.37)
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Then the combination leading to the spectral function is:

D>(t)−D<(t) =
1

2ω
〈[a, a†]e−iωt + [a†, a]eiωt〉β (6.38)

Using [a, a†] = 1

D>(t)−D<(t) =
1

2ω
〈e−iωt + eiωt〉β (6.39)

then

ρ(k0) =
2π

2ω
(δ(ω − k0) + δ(ω + k0)) = 2πε(k0) δ(k2

0 − ω2) (6.40)

This expression is called the free-spectral density. The name is due to the fact
that a free relativistic quantum field theory corresponds to a collection of harmonic
oscillators.

6.1.4 Matsubara Propagator

We now consider the Fourier transform of the imaginary-time propagator ∆(τ).
Because of its periodicity, we can restrict the time integration to the first cell [0, β]
and the Fourier integral reduces to a sum:

∆(iωn) ≡
∫ β

0
eiωnτ∆(τ), (6.41)

∆(τ) =
1

β

∑

n

e−iωnτ∆(iωn) (6.42)

where the Fourier frequencies are given by ωn = 2π
β n and will be referred to as

Matsubara frequencies.
We now seek for a spectral representation of ∆(iωn). To this end, we recall that,

if τ lies in the interval [0, β], then

∆(τ) = D>(−iτ) =

∫ ∞

−∞

dk0

2π
e−ik0(−iτ)D>(k0) =

∫ ∞

−∞

dk0

2π
e−k0τD>(k0) (6.43)

Then using the relationship (6.31) between D>(k0) and ρ(k0) we find:

∆(iωn) ≡
∫ β

0
eiωnτ

∫ ∞

−∞

dk0

2π
e−ik0(−iτ)(1 + f(k0))D>(k0) (6.44)

= −
∫ ∞

−∞

dk0

2π

ρ(k0)

iωn − k0
. (6.45)

Let us return to real-time propagators. From the basic definitions, it is immedi-
ate to show that the time-ordered propagators obey:

D(k0) =

∫
dteik0t

(
θ(t)D>(t) + θ(−t)D<(t)

)
(6.46)

Furthermore, it is useful to introduce the retarded and advanced propagators:

DR(t) = 〈θ(t)[q̂(t), q̂(0)]〉β (6.47)

DA(t) = −〈θ(−t)[q̂(t), q̂(0)]〉β. (6.48)
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Using the integral representation of the Heaviside funciton:

θ(t) = i

∫ ∞

−∞

dk′0
2π

e−ik0t

k′0 + iη
(6.49)

Then one immediately finds:

DR(k0) = i

∫ ∞

−∞

dk′0
2π

ρ(k′0)

k0 − k′0 + iη
(6.50)

DA(k0) = −i
∫ ∞

−∞

dk′0
2π

ρ(k′0)

k0 − k′0 − iη
(6.51)

Thus

DR(k0) = −i∆(k0 + iη) (6.52)

DA(k0) = i∆(k0 − iη). (6.53)

6.2 Non-Equilibrium Quantum Dynamics

In this section we extend the discussion of the irreversible dynamics in open systems
to the quantum level, starting from an arbitrary initial condition, which may rep-
resent an non-equilibrium state. In particular we upgrade to the quantum level the
same model discussed at the classical level in section 3.1.1, defined by the quantum
Hamiltonian:

Ĥ =
p̂2

2m
+ Û(x) +

∑

α

[
p̂2
α

2µα
+
µαω

2
α

2

(
q̂α −

cα
µαω2

α

x̂

)2
]

(6.54)

Our goal is to evaluate the evolution of the reduced density matrix for the
system’s variable, which is obtained by tracing out the bath from the full density
matrix:

ρ(x, y, t) ≡
∑

α

∫
dqα〈x, qα|ρ̂(t)|y, qα〉 (6.55)

where |x〉 and |y〉 are system’s position eigenstates while |qα〉 are bath’s position
eigenstates.

We consider starting from some specified initial condition. For example,

ρ̂(0) = |x0〉〈x0| ⊗ e−βĤB (6.56)

where ĤB =
∑

α

[
p̂2
α

2µα
+ µαω2

α
2

(
q̂α − cα

µαω2
α
x0

)2
]

is the bath Hamiltonian. Then the

reduced density matrix is written as follows:

ρ(x, y, t|x0, x0) =
∑

α

∫
dqα〈x, qα|e−

i
~ Ĥt ρ̂(0) e

i
~ Ĥt|y, qα〉 (6.57)

In order to describe the dynamics of the reduced density matrix we adopt the
path integral representation. To build the path integral we need to use Trotter
formula to represent the forward and backward time evolution operators entering
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Figure 6.1: The Keldysh-Schwinger contour C

expression (6.57). In addition we need to represent also the initial equilibrium
density matrix for the bath variables, which gives raise to an imaginary-time path
integral. The result is

ρ(x, y, t|x0, x0) =

∫
dQ

∫
dQ̄i

∫
dQi

∫ Q

Q̄i

DQ′α
∫ Qi

Q
DQ′′α

∫ Q̄i

Qi

DQE
∫ x

x0

Dx′
∫ x0

y
Dx′′

e
i
~ (SS [x′]+SSB [x′.Q′]) e−

i
~ (SS [x′′]+SSB [x′′,Q′′])e−SE [QE ]

(6.58)

where we have collectively denoted with Q the set of coordinates of all harmonic
oscillators and the action functionals in the exponent are:

SE [Q] =

∫ ~β

0
dτ
∑

α

[
q̇2
α

2
µα +

1

2
µαω

2
α

(
qα −

cα
µαω2

α

x0

)2
]

(6.59)

SB[Q,X] =

∫ t

0
dτ
∑

α

[
q̇2
α

2
µα −

1

2
µαω

2
α

(
qα −

cα
µαω2

α

x

)2
]

(6.60)

SS [x] =

∫ t

0
dτ

[
ẋ2

2M
− V (x)

]
(6.61)

It is convenient to introduce a notation which enables one to collectively represent
path integrals in the forward- backward- and imaginary time direction: To this end,
we introduce the so called Keldysh-Schwinger time contour represented in Fig. and
represent by

∫
C dτ the integral over the curvilinear abscissa which parametrizes it

(see Fig. 3.3). With this notation, the path integral representation of the density
matrix reads:

ρ(x, y, t|x0, x0) =

∫

C
DQ

∫

C
DX e

i
~ (SC [x]+SC [Q,x]) (6.62)

All path integrals over bath variables are of Gaussian type, so can be carried
out analytically. The result is an effective path integral representation in terms of
system’s variables only. Returning provisorily to a notation with explicit distinction
between forward- and backward- propagating paths, we have

ρ (x, y, t|x0, x0) =

∫ x

x0

Dx′
∫ x0

y
Dx′′ e i~ (SS [x′]−SS [x′′]+i~Φ[x′,x′′]), (6.63)
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where Φ[x′, x′′] is the so called Feynman-Vernon influence functional and reads:

Φ[x′, x′′] =

∫ t

0
dt′
∫ t′

0
dt′′
{

(x′(t′)− x′′(t′)) · [B(t′ − t′′)x′(t′′)−B∗(t′ − t′′)x′′(t′′)]
}

+
iµ̄

2

∫ t

0
dt′[x

′2(t′)− x′′2(t′)],

(
µ̄ =

c2
α

µαω2
α

)
(6.64)

B(t) is a Green’s function which encodes the fluctuation-dissipation induced by the
heat bath and reads:

B(t) =
∑

α

c2
α

2µαωα

[
coth

(
ωα~

2kBT

)
cos(ωαt)− i sin(ωαt)

]
. (6.65)

In complete analogy with the classical discussion, let us now consider the Ohmic
limit, in which the B(t) reduces to:

B(t) = C1δ(t) + i C2
d

dt
δ(t) + . . . (6.66)

The coefficient C1 and C2 are insofar unspecified parameters. However they can be
fixed by invoking the correspondence principle, i.e. requiring that , in the classical
limit, the time-evolution of the density matrix returns the prediction of classical
Langevin dynamics. In the following, we shall show that this choice is guaranteed if

C1 = 2MγkBT/~ C2 = Mγ (6.67)

At this point it is convenient to change variables in the path integrals and intro-
duce the so-called classical and fluctuation paths, defined as following:

R(τ) =
x′(τ) + x′′(τ)

2
(6.68)

Y (τ) = x′(τ)− x′′(τ) (6.69)

we emphasize that the second term parametrizes the difference between forward
and backward propagation. In terms of these functions, the Feynman-Vernon path
integral reads

ρ

(
Rf +

Yf
2
, Rf −

Yf
2
, t|x0, x0

)
=

∫ x

x0

DR
∫ 0

0
DY e

i
~ (W[R,y]+Φ′[R,y]) (6.70)

where Rf = x+y
2 , Yf = x− y, R(0) = x0, Y (0) = 0 and

W[R, Y ] =

∫ t

0
dτ

{
M Ṙ · ẏ − V

(
R+

Y

2

)
+ V

(
R− Y

2

)}

Φ′[R, Y ] =

∫ t

0
dt′
{
i
MγkBT

~
Y 2 +MγṘ · Y

}
(6.71)

Eq. (6.70) with Eq.s (6.71) and (6.71) are the quantum generalisation of the path
integral representation of the classical Fokker planck dynamics given in Eq. (3.76).

An important observation is that the functional at the exponent contains a
term proportional to −Y 2

~ . Thus, in the classical limit, fluctuations of the Y field
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around 0 are expected to be exponentially small. Based on this consideration, we
can expand the exponent to quadratic order in Y 2 and analytically perform the
resulting Gaussian integral over the Y field using the standard technique discussed
in Chapter 1. Note also that, in the classical limit, the non-diagonal elements in
the density matrix are suppressed. The final expression for the diagonal elements ,
which represent the probability of observing the particle at position R at time t is
P (Rf , t, x0) = ρR(Rf , Rf ; t|x0, x0):

P (Rf , t, x0) = N
∫ xf

x0

Dxe−
β

4Mγ

∫ t
t0
dτ(Mẍ(τ)+Mγẋ(τ)+∇U [x(τ)])2

(6.72)

hence, we have recovered the familiar result for a classical underdamped Langevin
dynamics.

6.3 The Quantum Master Equation and its Markovian
Limit

In the previous section we have discussed the path integral representation of the
time-dependent density matrix, which provides the quantum mechanical qeneralisa-
tion of the conditional probability generated by the Langevin equation. In the pre-
vious chapter, we have shown that for a classical particle obeying the over damped
Langevin equation (Markovian limit) the conditional probability obeys the SFP
equation (3.91). It is then natural to ask the question: what is the quantum coun-
terpart of such an equation?

We recall that the total density operator of the system and heat bath obeys the
Liouville-von Neumann equation:

i~ ˙̂ρ(t) = [Ĥtot, ρ̂(t)], (6.73)

which is equivalent to a Schrödinger equation.
The system’s reduced matrix, which we recall is defined as the trace of ρ̂ over

the bath degrees of freedom, does no longer obey Eq. (6.73). It can be shown that,
in general, the trace over the heat-bath generates an additional non-unitary term:

i~
∂

∂t
ρ̂(t) = [Ĥtot, ρ̂(t)] + iD̂ρ̂(t) (6.74)

which is called the (Quantum) Master Equation. In this equation, D̂ is a super-
operator which provides non-unitary character to the time-evolution of the density
matrix.

Lindblad showed that in the Markovian limit (which is equivalent to the over
damped limit for the Langevin equation) the quantum Master Equation takes the
general form:

˙̂ρ = [Ĥtot, ρ̂(t)] +
1

2~
∑

µ

(
[L̂µρ̂, L̂

†
µ] +

[
L̂µ, ρ̂L̂

†
µ

] )
(6.75)

where {L̂µ}µ denotes a generic set of operators in the Hilbert space. Hence, in this
limit, the super-operator D̂ reads

D̂ρ =
1

2~
∑

µ

(
[L̂µρ̂, L̂

†] + [L̂µ, ρ̂L̂
†]
)

(6.76)
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This equation is referred to as the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
equation or sometimes simply the Linblad equation. It is often used to investigate
the effect of decoherence and dissipation at the quantum level.
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Statistical Fields
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Chapter 7

Non-Relativistic Quantum and
Statistical Fields

Let us consider the problem of computing quantum canonical averages of the system

described by the Hamiltonian Ĥ = p̂2

2M + U(q̂). If this system is coupled to a
thermostat at temperature 1/β (we shall adopt a system of units in which kB = 1)
it reaches a state of thermal equilibrium, whose properties can be entirely deduced
from its (quantum) partition function.

Z(β) = Tre−βH =
∑

n

e−βEn , (7.1)

where the trace is evaluated on a complete set of eigenvalues of Ĥ,

Ĥ|n〉 = En|n〉. (7.2)

Using the properties of the trace, we can represent the thermal density matrix
operator e−βH on the basis set formed by the eigenvectors of the position operator:

Z(β) =

∫
dy〈y|e−βH |y〉. (7.3)

Hence, the partition function can be represented as a periodic path integral in
imaginary time, with t′′ − t′ = −iβ:

Z(β) =

∫
dy K(y,−iβ|y) =

∮
Dy(τ) e−SE [y], (7.4)

where SE [q] is the systems’ Euclidean action and the symbol
∮

refers to the periodic
boundary conditions q(β) = q(0). Thus, the quantum canonical ensemble is mapped
into the classical partition function of “ring polymers”, with length set by the inverse
temperature β. This mathematical statement illustrate that the cost of upgrading
the statistical mechanics of a bosonic system from the classical to the quantum level
is to introduce into the partition function an infinite set of coupled copies of the
classical system, one for each incremental imaginary time step.

95
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7.1 Non-Relativistic Bosonic Quantum Fields

This section contains a brief introduction to second-quantized formulation of non-
relativistic quantum mechanics of many-body systems. An obvious application of
this formalism is the theoretical discussion of quantum many particle systems. In
this course, however, we are mostly concerned with two alternative applications
of field theory: (i) modelling of the equilibrium statistical classical mechanics of
polymers and (ii) modelling the irreversible non-equilibrium dynamics of isolated
quantum excitations, propagating in an open environment.

The first application (to be discussed in the next chapter) is based on exploit-
ing the formal duality between quantum dynamics in imaginary time and classical
equilibrium statistical mechanics, which was established in the previous section.
The second application (to be discussed e.g. in [6, 7, 8] ) concerns the evolution
of single-body excitations, which are obviously insensitive to Pauli principle. Thus,
both such applications can be developed by considering only bosonic degrees of free-
dom. The reader interested to the generalization to fermionic fields is referred, e.g.
to Negele-Orland’s classic textbook [5].

N-particle bosonic states: In the non-relativistic limit, pair-creation annihi-
lation effects are suppressed and the number of particles is conserved. Consequently,
the Hilbert space H for a generic N -particle quantum system can constructed com-
bining N single-particle Hilbert spaces: Namely, if |λ〉 represents a complete orthog-
onal basis set for the single particle space, then the N− particle states

|λ1, . . . , λN} ≡ |λ1〉 ⊗ . . .⊗ |λN 〉 (7.5)

provide a complete orthonormal basis for the N -particle Hilbert space HN . Notice
that, following [5], we have chosen to the note the ”ket” symbol by a curly bracket.
This is to keep track that the states defined in (7.6) do not obey Bose symmetry,
hence cannot represent physical bosonic states. A symmetrized version of the the
N -boson state is denoted as

|λ1, . . . , λN 〉 ≡
∑

perm.

P [|λ1〉 ⊗ . . .⊗ |λN 〉] (7.6)

where the sum is over all permutations of particle indexes, thus establishes Bose
symmetry.

The bosonic Fock space is defined as the direct sum of infinitely many of such
Hilbert spaces, each one corresponding to a different number of particles:

F ≡ H0 ⊕H1 ⊕H2 . . . =
∑

⊕

∞

k=0

Hk (7.7)

The boson creation operators are defined by:

â†λ|λ1, . . . , λN} = |λ, λ1, . . . , λN}, (7.8)

Equivalently, using symmetrized basis states, one has:

â†λ|λ1, . . . , λN 〉 =
√
nλ + 1|λ, λ1, . . . , λN 〉 (7.9)



7.1. NON-RELATIVISTIC BOSONIC QUANTUM FIELDS 97

where nλ is the occupation number of the quantum state with quantum number λ.
The vacuum state is defined by

â†λ|0〉 = |λ〉. (7.10)

It is immediate to verify that Bose symmetry implies the commutation relation-
ship:

[â†λ, â
†
λ′ ] = 0. (7.11)

The unsymmetrized and symmetrized multi-boson state may be generated by acting
with the creation operator on the vacuum:

|λ1, . . . , λN} = â†λ1
. . . â†λN |0〉 (7.12)

|λ1, . . . , λN 〉 =
1√∏N
k=1 nλk !

â†λ1
. . . â†λN |0〉 (7.13)

(7.14)

The creation operators are not self-adjoint. Hence, annihilation operators
can be defined as âλ = (a†λ)†. By taking the adjoint of Eq. (7.8), it is immediate to
prove that:

〈α1, . . . , αm|âλ|β1, . . . , βn〉 = 〈λ, α1, . . . , αm|β1, . . . , βn〉. (7.15)

The right-hand-side of this equation is 0 unless m+ 1 = n. Hence, the annihilation
operator reduces the number of particles in a space. In particular, when acting on
the vacuum state we have:

âλ|0〉 = 0 〈0|a†λ = 0 (∀ λ). (7.16)

To close the algebra of these operators we need to evaluate [a†λ, a
†
ξ] and [aλ, a

†
ξ].

By direct applying â and â† on a generic multi-boson state, it is a trivial exercise to
obtain

[âλ, âξ] = 0 (7.17)

[âλ, â
†
ξ] = δλξ (7.18)

Finally, we define the normal ordering of an arbitrary sequence of creation and
annihilation operators as the rearrangement which moves all the annihilation oper-
ators to the rightmost side, for example

: aλa
†
ξaµaνa

†
σ := a†ξa

†
σaλaµaν (7.19)

If the number of particles in a system is held fixed to N , a generic quantum
state can be written as:

|Ψ〉 =

∫
d3x1 . . .

∫
d3xN ψ(x1, . . . , xN ) |x1, . . . , xN 〉 (7.20)

where ψ(x1, . . . , xN ) is the wave-function projected onto the coordinate basis, since

〈x1, . . . , xN |Ψ〉 = ψ(x1, . . . , xN ). (7.21)
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Note also that

〈p1, . . . , pN |Ψ〉 =

∫
d3x1 . . .

∫
d3xN ei

∑
i pi·xi ψ(x1, . . . , xN ). (7.22)

On the other hand, If the number of particles in a system is not fixed (e.g. in
relativistic quantum systems) a generic state |ψ〉 has to be projected onto Fock
spaces built out of different particle numbers:

|Ψ〉 =

∫
d3x1c1(x1)|x1〉+

∫
dx1dx2c2(x1, x2)|x1x2〉

+

∫
dx1dx2dx3c2(x1, x2, x3)|x1x2x3〉+ . . . (7.23)

Given the creation and annihilation operators associated to a given complete
orthonormal basis |λ〉, it is immediate to obtain the creation operators associated
to a different basis, |α〉:

â†α =
∑

λ

〈λ|α〉 â†λ (7.24)

âα =
∑

λ

〈α|λ〉 âλ. (7.25)

In particular, a very useful basis set is that which combines position eigenstates
x and possibly other internal discrete quantum numbers (e.g. spin and iso-spin);
|X〉 ≡ |xστ〉. In this case, the creation operators are traditionally denoted with
ψ̂(X) and ψ̂†(X) and are called the field operators. The general expansion of
field operators on another basis set |α〉 is given by:

ψ̂†(X) =
∑

λ

〈λ|X〉 â†λ (7.26)

ψ̂(X) =
∑

λ

〈X|λ〉 âλ (7.27)

For example, for a continuous system of spin-0 boson with no other internal de-
gree of freedom, choosing |λ〉 to be the momentum eigenstates basis (i.e. eigenstates
of the free Hamiltonian), then we have:

ψ̂†(x) =

∫
d3p

(2π)3
eip·x â†p (7.28)

ψ̂(x) =

∫
d3p

(2π)3
e−ip·x âp. (7.29)

i.e. the non-relativistic limit of the field operators routinely introduced in the de-
scription of high-energy scattering, in which anti-particle degrees of freedom are
neglected.

A convenient way to represent a generic operator in terms of field operators
consists in first giving its expression in a basis in which it is diagonal, and then
transform to the position eigenstate basis. For example the kinetic energy operator
is diagonal in the momentum basis:

T̂ =

∫
d3p

(2π)3
ψ̂†(p)

(
p2

2m

)
ψ̂(p) (7.30)
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hence, in coordinate space we have

T̂ =

∫
d3x ψ̂†(x)

(−∇2

2m

)
ψ̂(x). (7.31)

We conclude this section with an illustrative application. We show that when
the following normal-ordered field-theoretic Hamiltonian

Ĥ =

∫
d3x ψ̂†(x)

−∇2

2m
ψ̂(x) +

∫
d3x

∫
d3y U(x, y) : ψ̂†(x)ψ̂(x) ψ̂†(y)ψ̂(y) : .

(7.32)

acts on theN particle Hilbert spaceHN , it reduces to the first quantised Hamiltonian

Ĥ =
∑

i

−∇2
i

2m
+
∑

i<j

U(xi, xj). (7.33)

To show this result, first the kinetic energy operator projected onto the position
basis:

〈x1, . . . , xN |T̂ |Ψ〉 = 〈x1, . . . , xN |
∫

d3p

(2π)3

p2

2m
ψ̂†pψ̂p

·
[∏

l

∫
d3kl

(2π)3

]
ψ(k1, . . . , kN )|k1, . . . , kN 〉

=

∫
d3p

(2π)3

(
p2

2m

N∑

i=1

δ(p− ki)
)
〈x1, . . . , xN |

·
[∏

l

∫
d3kl

(2π)3

]
ψ(k1, . . . , kN )|k1, . . . , kN 〉

=

[∏

l

∫
d3kl

(2π)3

](
N∑

i=1

k2
i

2m

)
ψ(k1, . . . , kN ) ei

∑
m pm·xm

=
N∑

i=1

−∇2
i

2m
ψ(x1, . . . , xN ). (7.34)

The potential energy operator is diagonal in the position basis, hence:

〈x1, . . . , xN |Û |Ψ〉 =
1

2

∫
d3z

∫
d3y〈x1, . . . , xN | : ψ̂†yψ̂y ψ̂†zψ̂z : |Ψ〉 U(z − y)

=

N∑

i<j=1

U(xi, xj)ψ(x1, . . . , xN ). (7.35)

Note that, without normal ordering, this sum would contain also N self interacting
terms with i = j. For many potentials, these contribution would lead to an infinite
energy.
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7.2 Path Integral on Coherent Fields

Coherent states provide a convenient complete basis for the Fock space. Indeed,
they display the useful feature that each coherent state spans the entire Fock space,
i.e. contains components of with an arbitrary number of particles. Coherent states
are defined as the eigenstates of the annihilation operator,

âα|φ〉 = φa |φ〉 (7.36)

where the eigenvalue φα is in l a complex number.

It is easy to verify that

|φ〉 = e
∑
α φαâ

†
α |0〉, (7.37)

〈φ| = 〈0|e
∑
α φ
∗
αâα , (7.38)

provide a constructive definition of coherent states (and of their duals).

Some important properties follow immediately from the definition of these states:
First, we have that

〈φ|â†α = 〈φ|φ∗α (7.39)

Next, we observe

â†α|φ〉 = â†α e
∑
α φαa

†
α |0〉 =

∂

∂φα
|φ〉 (7.40)

and its adjoint relation

〈φ|âα =
∂

∂φ∗α
〈φ| (7.41)

The orthogonality condition on the states |α〉 created by a†α implies

〈φ|φ′〉 = e
∑
α φ
∗
α φ′α , (7.42)

Thus, coherent states are not orthonormal!

A crucial property of the coherent states is their over completeness in the Fock
space. This implies that any vector in the Fock space can be expanded in coherent
states. On the other hand, the over completeness implies that the resolution of the
identity reads

1 =

∫ ∏

α

dφαdφ
∗
α

2πi
e−
∑
α φ
∗
αφα |φ〉〈φ| (7.43)

The proof of this relation is straightforward and can be found e.g. in Ref. [5], where
the integration measure in (7.43) is defined by the Jacobian hence reads

dφαdφ
∗
α

2πi
=
d(<eφα) d(=mφα)

π
(7.44)

and the integration runs over the real and complex axes.
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A quantum state |ψ〉 can be represented in the coherent basis as follows

|ψ〉 =

∫ ∏

α

dφαdφ
∗
α

2πi
e−
∑
α φ
∗
αφα |φ〉〈φ|ψ〉 (7.45)

where φ denotes the set of all component φ1, . . . , φN .
A powerful property of coherent states which will be used shortly is that matrix

elements of normal-ordered operators between coherent states take a particularly
simple form: denoting with A(â†α, âβ) a normal-ordered operator, then:

〈φ|A(α̂†α, âβ)|φ′〉 = A(φ∗α, φ
′
β) e

∑
l φ
∗
l φ
′
l . (7.46)

For example, if A(â†α, âβ) then

〈φ|α̂†αâβ|φ′〉 = φ∗αφ
′
β 〈φ|φ′〉 = φ∗αφ

′
β e

∑
l φ
∗
l φ
′
l . (7.47)

We now use the coherent state basis to construct another equivalent representa-
tion of the path integral, in which the integration is carried over the configurations
of complex classical fields which represent the eigenvalues of the coherent states.

The eigenvalues of the coherent states are then complex functions of the coordi-
nates (i.e. complex classical fields):

ψ̂(x)|φ〉 = φ(x)|φ〉, (7.48)

where we have ψ̂(x) ≡ âx are the quantum fields. As in the coordinate space
path integral, the starting point to represent the evolution operator is the standard
Trotter decomposition:

K(xf , t;xi) = 〈0|ψ̂(xf )e−
i
~ tĤ ψ̂†(xi)|0〉 = 〈0| ψ̂(xf )

(
e−

i
~∆tĤ

)Nt
ψ̂†(xi)|0〉. (7.49)

where ∆t = t/Nt.
Next, we introduce an infinite set of completeness relations between each matrix

elements, based on the coherent states associated to each point in space:

〈0| ψ̂(xf )
(
e−

i
~∆tĤ

)Nt
ψ̂†(xi)|0〉 = 〈0|ψ̂(xf )

Nt∏

l=1

(
e−

i
~∆tĤ

)
ψ†(xi)|0〉

=

∫ Nt∏

k=1

[
Dφk(x)Dφ∗k(x)

2πi
e−
∫
d3xφ∗k(x)φk(x)

]
〈0|ψ̂(xf )|φNt〉

(7.50)

·〈φk|e−
i
~ Ĥ∆t|φk−1〉 . . . 〈φ1|ψ̂†(xi) |0〉,

(7.51)

where the symbol Dφ(x) collectively denotes a product of infinitely many integrals,
one for each point in space. Each of such integrals is performed over the values
of the complex number φ associated to a different point of space x. Hence Dφk
represents the functional measure an integral over the field configuration at the k-th
time slice. |φ〉 denotes the direct product of infinitely many coherent states, each
one associated to a different point in space.
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First, let us notice that.

〈xf |φ〉 = 〈0|ψ̂(xf )|φ〉 = 〈0|ψ̂(xf ) e
∫
d3xφ(x)ψ̂†(x)|0〉 = φ(xf ) (7.52)

〈φ|xi〉 = 〈φ|ψ̂†(xi)|0〉 = φ∗(xi). (7.53)

Next, we use Eq. (7.46) and find

〈φk+1|e−
i
~∆tĤ |φk〉 = e

∫
d3xφ∗k+1(x)φk(x)− i

~∆t H(φ∗k+1,φk) (7.54)

It is convenient to introduce the notion of time-dependent trajectory φ(t) to
collectively represent the value of the field at all points at time t. In addition, we
use the notation

φ∗(x, t)
φ(x, t)− φ(x, t−∆t)

∆t
≡ φ∗(x, t) ∂

∂t
φ(x, t) (7.55)

Consistently with our order-∆t discretization, we also perform the identification:

H[φ∗(t), φ(t−∆t)]→ H[φ∗(t), φ(t)] (7.56)

With such a notation, the exponent collecting all the phases obtained from all
elementary propagators can be written as follows:

∫
d3xφ∗(x, t)φ(x, t) +

i

~

∫ t

0
dt′
∫
d3x

[
i~ φ∗(x, t′)

∂

∂t′
φ(x, t′)−H[φ∗(x, t), φ(x, t)]

]

≡
∫
d3xφ∗(x, t)φ(x, t) +

i

~
S[φ∗, φ], (7.57)

where

S[φ∗, φ] ≡
∫ t

0
dt′
∫
d3x

[
i~ φ∗(x, t′)

∂

∂t′
φ(x, t′)−H[φ∗(x, t), φ(x, t)]

]
(7.58)

is the so-called Schrödingier action functional, whose variation with respect to the
field generates the Schrödinger equation of motion for the fields.

Combining these results in the functional integral notation, we find our final
result for the Feynman propagator:

〈xf |e−
i
~ Ĥ t|xi〉 = N

∫
Dφ∗Dφ e

∫
d3xφ∗(x,t)φ(x,t)φ(xf , t) φ

∗(xi, 0) e
i
~S[φ∗,φ]

(7.59)

In this expression we have used the functional measure Dφ to represent infinitely
many integrals over the values of the field at each point in space and in time and we
denoted with N the standard normalization factor. To get rid of this ugly normal-
isation factor, we multiply and divide by the vacuum-vacuum transition 〈0|e−tH |0〉
and use Ĥ|0〉 ≡ 0. Thus

〈xf |e−
i
~ Ĥ t|xi〉 =

∫
Dφ∗Dφ eL(t)φ(xf , t) φ

∗(xi, 0) e
i
~S[φ∗,φ]

∫
Dφ∗Dφ eL(t) e

i
~S[φ∗,φ]

(7.60)
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where L(t) ≡
∫
d3xφ∗(x, t)φ(x, t). Thus the normalization factor is N = 1/Z with

Z =

∫
Dφ∗Dφ eL(t) e

i
~S[φ∗,φ].

(7.61)

It is straightforward to generalise this calculations to include an arbitrary number
of particles in the initial and final states. This simply amounts to introduce more
fields in the prefecture entering in the numerator. For example, the two particle
propagator reads:

〈xfyf |e−
i
~ Ĥ t|xiyi〉 =

∫
Dφ∗Dφ eL(t)φ(xf , t) φ

∗(xi, 0) φ(yf , t) φ
∗(yi, 0) e

i
~S[φ∗,φ]

∫
Dφ∗Dφ eL(t) e

i
~S[φ∗,φ]

(7.62)

We note one significant difference between the coherent state functional integral
(7.62) and the Feynman path integral (1.17) is in the dependence upon ~. In the
Feynman case, an overall factor i

~ appears as a constant multiplying the integral at
the exponent, hence the stationary phase approximation yields directly the classical
limit. On the other hand, in the coherent state path integral, the factor i

~ appears
also inside the Schrödinger action, so that the stationary phase approximation yields
results which are distinct from the classical limit.

We conclude this section by deriving an alternative operator expression for the
Feynman’s path integral.

〈xf |e−
i
~ Ĥ t|xi〉 = 〈0|ψ(xf )e−

i
~ Ĥtψ†(xi)|0〉

= 〈0|e+ i
~ Ĥt ψ(xf )e−

i
~ Ĥte

i
~ Ĥ0ψ†(xi)e

− i
~ Ĥ0|0〉

= 〈0|T [ψ̂(xf , t)ψ̂
†(xi, 0)]|0〉. (7.63)

In this expression, ψ̂(x, t) denotes the field operator in the Heisemberg representa-
tion and T [. . .] represents the time ordering. Hence, we have shown that the field
theoretic path integral is related to time ordered vacuum expectation values of field.

7.3 Statistical Fields

In the previous section we have seen how field-theoretic path integral naturally
emerges in the discussion of quantum dynamics, when the propagator is evaluated
using the coherent state basis of the Fock space. In statistical mechanics, field
theoretic path integrals are often adopted to represent the partition functions of
classical systems with infinitely many degrees of freedom. Such fields, however, do
not represent quantum coherent quantum states but should only be regarded as an
infinite collection of stochastic variables describing the local configurations of the
system.

A standard example of statistical field theory is used to represent Landau’s model
for ferromagnetic phase transition (see e.g. [11]) . It can be shown that, when the
temperature of a magnetizable material approaches the critical temperature of the
ferromagnetic phase-transition, all correlation lengths diverge, decoupling from the
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microscopic scale a associated to the lattice spacing. Therefore, in this temperature
regime is possible to define an effective theory with spacial resolution defined by a
new length scale λ � a. At such a low-resolution, the configuration of the spins
in the lattice can be effectively provided by a field of stochastic variables φ(x),
which represent locally the result of averaging the lattice spin components in a small
portion of volume λ3, centred around point x. The canonical partition function of
the (D-dimensional) Landau’s effective theory is

Z[B] =

∫
Dφ e−βH[φ,B] (7.64)

where H[φ,B] is the Hamiltonian:

H[φ,B] =

∫
dDx

[
1

2
(∇φ(x))2 + r0(T )φ2(x) + u0(T )φ4(x)

]
−
∫
dDx φ(x)B(x)

(7.65)

and B(x) is the modulus of the external magnetic field, assumed to be pointing along
a fixed direction ẑ. Other example of statistical field theory are applied to model the
equilibrium properties of soft-condensed matter systems, such as e.g. liquid crystals
or polyelectrolytes.

7.4 N-point Correlation Functions and the Generating
Functional

Much of the physical information which can be extracted from quantum or statis-
tical field theories is encoded in their n−point correlation functions. These Green’s
functions express the dynamical or statistical correlations between arbitrary subsets
of the degrees of freedom in the system, as a result of the effect of interactions,
thermal or quantum fluctuations and possibly of quantum statistics.

As a first example, let φ(x) be the statistical field which expresses the local spin
polarization in Landau’s theory. Then the combination of thermal averages

G2(x, y) = 〈φ(x)φ(y)〉 − 〈φ(x)〉〈φ(y)〉 (7.66)

tells us how the local polarization at the points x and y are correlated at ther-
mal equilibrium. In particular, we expect that in the paramagnetic phase such a
correlation should drop exponentially to 0 with the distance between x and y, i.e.
G2(x, y) ∝ exp(− |x−y|2σ ), where σ is called the correlation length.

As a second example one can consider the correlation between the position of
the endpoints of a linear polymer. In the next section, we shall show that, in the
limit in which this molecule can be described by a “leckneck” of beads connected
by harmonic springs (random chain), then G2(x, y) ∝ exp(−(x− y)2/4κ2), where κ
is called the persistence length.

Finally, we have seen that in quantum field theory the time-dependent time-
ordered Green’s function

Π2(x, t; y, t′) = 〈0|T [ψ̂(x, t)ψ̂†(y, t′)]|0〉 (7.67)
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expresses the probability amplitude for a particle to be prepared at position y at
time t′ to be observed at x at time t’. In view of its path integral representation, this
Feynman propagator can be interpreted as the correlation function of the quantum
fields.

Of course, it is possible to define correlation functions involving an arbitrary
number of fields, which encode more and more specific information about the sys-
tems’ dynamical correlations. For example the quantum field theory Green’s func-
tion

Π2(x, t; y, t′) = 〈0|T [ψ̂(x, t)ψ̂(x′, t) ψ̂†(y, t′)ψ̂†(y′, t′)]|0〉 (7.68)

naturally occurs in the study bound-states and scattering problems.
Solving a quantum or statistical field theory ultimately amounts to being in con-

dition to compute arbitrary n-point Green’s functions. In the following sections we
shall discuss techniques to achieve this goal through ad-hoc approximations. For
sake of definiteness, we shall carry out this discussion focusing on a specific statis-
tical field theory consisting of a single real statistical scalar field in D dimension1

described by the following Hamiltonian

H =

∫
dDx

(
−1

2
φ(x)∇2φ(x) +

m2

2
φ2(x)

)
+ V [φ(x)], (7.69)

where V [φ] is the so-called interaction potential for the field. A particularly inter-
esting case is one in which V [φ] is a local polynomial potential, i.e. it is in the
form

V [φ] =

n∑

α=1

gα
α!

∫
dDx φα(x), (7.70)

where α is an integer number greater than 3 and gα are real coupling constants. The
factorial pre-factor 1

α! is introduced for convenience. Indeed, as we shall shortly see,
a theory with a φα-type interaction will generate a perturbation theory in which
leading-order corrections consist of α! different terms.

In discussing the calculation of N -point correlation function in field theory it
is very convenient to introduce a mathematical object called generating functional,
defined as follows

Z[j] =

∫
Dφ e−βH[φ]−

∫
dDxj(x)φ(x) (7.71)

In this expression j(x) is an arbitrary external field — which will be called the
source field. In some particular cases, -source fields may have a direct physical
interpretation. For example in Landau theory, they represent the external magnetic
field B(x). In general, the usefulness of introducing the generating functional with
external sources is that arbitrary N -point correlation functions can be obtained by
multiple appropriate (functional) differentiation of the logarithm of the generating
function. For example, the two point correlation function (7.6.1) is given by:

G2(x, y) = lim
j(x)→0

[
δ2 logZ[j]

β2δj(x)δj(y)
−
(
δ logZ[j]

δj(x)

)2
]

(7.72)

1The extension to coherent fields is straightforward and further applications of these methods to
relativistic vector or Dirac fields can be found in all introductory quantum field theories textbooks.
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Hence, in completely general terms, the problem of solving a field theory is ultimately
equivalent to computing the generating functional with an arbitrary source term.

7.5 Gaussian Path Integrals

In this section, we shall show that when the Hamiltonian of a field theory is at
most quadratic in the fields it is possible to analytically evaluate the path integral.
This result provides the basis to derive perturbation theory and Feynman diagrams,
which will be discussed in section 7.6.

7.5.1 Wick Theorem

We assume that the exponent entering the definition of generating functional ofZ[j]
contains only terms which are linear and quadratic in the fields. Namely, we consider
the a general structure of the Hamiltonian in the form:

H0[φ] =
1

2

∫
dDxφ(x)Ŵ (x)φ(x) (7.73)

where Ŵ (x) may be a differential operator. Choosing a system of units in which
β = 1 generating functional reads:

Z[J ] =

∫
Dφe− 1

2

∫
dDxφ(x)Ŵ (x)φ(x)−

∫
dDxJ(x)φ(x) (7.74)

For example, a paramagnetic system may be described by the quadratic Hamiltonian
H0::

H0[φ] =

∫
dDxφ(x)

(
−1

2
∇2 +

1

2
m2

)
φ(x) (7.75)

The trick to conveniently evaluate the path integral is to perform a shift of the
field variables using the following re-definition:

φ(x)→ φ′(x) = φ(x)−
∫
dDy∆0(x− y)J(y), (7.76)

where ∆0(x) is the Green’s function of the operator which enters in the quadratic
part of the Hamiltonian, i.e.

Ŵ (x)∆0(x− y) = δ(x− y). (7.77)

In the specific example provided by the Hamiltonian (7.75) one can evaluate ∆0(x−
y) by transforming this equation into Fourier space. Then one immediately reduces
to quadrature the problem of computing ∆0(x− y):

∆0(x− y) = 〈φ(x)φ(y)〉0 =

∫
dDk

(2π)D
e−i(x−y)·k

k2 +m2
, (7.78)
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The result of this Fourier transform obviously depends on the number of dimensions.
In particular, for D = 1, 3, 4 one finds

D = 1 : ∆0(x) =

√
π

2
e−m|x| (7.79)

D = 3 : ∆0(x) =
e−m|x|

4π|x| (7.80)

D = 4 : ∆0(x) =
m

4π2|x|K1(m|x|). (7.81)

Where K1(z) is a modified Bessel function of the first kind. The expression for
D = 2 involves a cumbersome combination of special functions and will not be
reported here.

The change of variable (7.76) has obviously a unitary Jacobian. Upon dropping
the redundant superscript ′ the generating functions in the new variables reads:

Z0[j] = Z0[j = 0]× e 1
2

∫
dDx

∫
dDy j(x) ∆0(x−y) j(y). (7.82)

Note that the pre-factor Z0[j = 0] is an overall constant which does not influence
thermal averages, hence can be dropped.

An important observation is that the Green’s function ∆0(x−y) can be identified
with the two-point function:

∆0(x− y) = G2(x− y) = 〈φ(x)φ(y)〉 (7.83)

This can be shown directly applying the functional derivatives in Eq. (7.72) and
then setting the external currents to 0. Note also that, for a quadratic Hamiltonian
and vanishing external current j = 0, the field averages vanish by symmetry, i.e.
〈φ(x)〉 = 0.

Having obtained the explicit expression for the generating functional in the free
theory, it is straightforward to evaluate all n−point correlation functions, by per-
forming multiple functional differentiation and then setting the source to 0. Any
time the functional differentiation acts on the exponent, it brings down a new power
of the external source in the pre-factor. For example

δ

δj(z)
e

1
2

∫
dDx

∫
dDy j(x) ∆0(x−y) j(y)

=

∫
dDy∆0(z − y) j(y)e−

1
2

∫
dDx

∫
dDy j(x) ∆0(x−y) j(y) (7.84)

The next time a functional derivative is performed, it can act on the pre-factor
or on the exponent. In the former case it lowers the order of the source polyno-
mial in the pre-factor, while in the second case increases. Therefore the functional
differentiation leads to an expression in the general form:

P [j]e
1
2

∫
dDx

∫
dDyj(x)∆0(x−y)j(y) (7.85)

where Pn[j] is a polynomial of order n in the sources, whose coefficients contain
product of Green’s functions ∆0(x − y). Now we recall that at the end of the
calculation all the sources must be set to zero. Thus only the zero-th order term in
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�0(x1, x5)�0(x2, x6)�0(x3, x8)�0(x4, x7) ()

Figure 7.1: Graphical representation of a Wick contraction involved in a 8-point
correlation function
.

Pn[j] will survive. Based on this observation, it is immediate to proof the following
fundamental result which is usually referred to as Wick theorem:

〈φ(x1) φ(x2) . . . φ(xn)〉0 = ∆0(x1 − x2) ∆0(x3 − x4) . . . ∆0(xn−1 − xn)

+( all possible permutations of space indexes)

(7.86)

A graphical representation of the Wick contraction appearing in a 8-point function
is given in Fig. 7.1.

Some comments on this result are in order. In the quantum field theory lit-
erature, the propagator ∆0(|x1 − x2|) is sometimes referred to as a contraction of
φ(x1) and φ(x2), With such a terming, the Wick theorem can be formulated as ”
the n-point correlation function is obtained by summing over all possible products
of contractions”. We also observe that correlations functions with an odd number
of fields are identically vanishing.

Feynman introduced an extremely useful graphical notation to represent the
result of Wick theorem for generic n-point correlation function. In Feynman di-
agrams, each contraction is (propagator ∆0(x, y) denoted with a line connecting
the endpoints x and y. Then each permutation in the sum over contraction is
represented by a different way of connecting by straight lines the n-points of the
correlation function. A simple example is given in Fig. 1, where we show one par-
ticular contraction appearing in the evaluation of the 8-point correlation function
G8(x1, . . . , x8).

7.6 Perturbation Theory

In the previous section we have discussed the exact solution of Gaussian path in-
tegrals, and the associated Wick theorem. We recall that Gaussian path integral
are associated to quadratic Hamiltonians (or actions in quantum theories), which
describe systems in which the dynamical degrees of freedom are not coupled to one
another, but only (at most) to an external field (the source).
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The usefulness of the results concerning Gaussian path integrals go well beyond
the discussion of free systems. Indeed, free fields provide the basis to develop a
perturbation theory which is applicable any the Hamiltonian contains terms which
are of higher order polynomials in the fields, yet the corresponding coupling constant
can be regarded as a small parameter.

The key step towards developing such a perturbation theory is to expand the
exponent containing the interaction terms in Taylor series of the coupling. This way,
one reduces the problem of computing an arbitrary n−point correlation function in
the interacting theory to that of evaluating a number of m−point correlation func-
tions with m ≥ n, in the free theory. Then, Wick theorem and Feynman diagrams
can be used to evaluate each of such correlation functions

We now discuss in detail a simple example in which this program is carried out in
detail and use this to infer Feynman rules, i.e. a set of procedures which enables one
to avoid complicated and error-prone calculations, and obtain directly the result,
from a set of surprisingly simple graphical rules.

7.6.1 Example: Calculation of a Two-Point Correlation Function
in φ4 Theory.

Consider an interacting theory with a potential in the form

V [φ] =
λ

4!

∫
dDxφ4(x). (7.87)

Our task is to evaluate the two point correlation function

G2(x, y) = 〈φ(x)φ(0)〉 =

∫
Dφ φ(x)φ(0) e−βH[φ]

∫
Dφ e−βH[φ]

(7.88)

up to order λ. To this end, we separately analyze the leading terms in the Taylor
expansion for small λ of both the numerator and denominator of (7.88).

The numerator is:

N2(x, y) =

∫
Dφ φ(x)φ(y) e−βH0[φ] +

∫
Dφ φ(x)φ(y)

(
− λ

4!

∫
dDzφ4(z)

)
e−βH0[φ]

+
λ2

(4!)2

∫
Dφ φ(x)φ(y)

∫
dDzφ4(z)

∫
dDwφ4(w) e−βH0[φ] + . . . (7.89)

Upon multiplying and diving for the partition function of the free theory we find:

N2(x, y) = Z0

(
〈 φ(x)φ(0)〉0 −

λ

4!

∫
dDz〈 φ(x)φ(y)φ4(z) 〉0

+
λ2

(4!)2

∫
dDz

∫
dDw〈φ(x)φ(y) φ4(z)φ4(w)〉0 + . . .

)
(7.90)

Similarly, the denominator reads

D2 = Z0

(
1− λ

4!

∫
dDz〈 φ4(z) 〉0 +

λ2

(4!)4

∫
dDz

∫
dDw〈 φ4(z) φ4(w)〉0 . . .

)
(7.91)

Each correlation function in the numerator and in the denominator can be evaluated
using Wick theorem. The graphical representation of the sum over all contractions
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+ a + b  + c + d + e +. . .

1  +  b +  e +. . .

G2(x) = 

=  + a + c + d +. . .

G2(x, y) =

=

xy y y y yx x x xxy

y y y yx x x x

…

…

Figure 7.2: Graphical representation of the contribution of the numerator and de-
nominator to the two-point correlation function in the φ4 theory to order λ2. The
lower inset shows an example of cancellation of disconnected diagrams

in the numerator and denominator is given in Fig. 1.1. In this diagram we are
adopting a notation in which an integral over the position of each vertex attached to a
closed loop is implicitly assumed and a, b, c, . . . are integer numbers called symmetry
factors. These coefficients count the numbers of different contractions which give
raise to topologically equivalent diagrams. In general, evaluating symmetry factors
is a tedious task, as it requires performing all Wick contractions. In some cases
(such as e.g for the present φ4 scalar field theory of for Quantum Electrodynamics)
simple graphical rules can be established yield directly the symmetry factor and
avoid having to perform all Wick contractions explicitly (see e.g. [11, 12, 13]).
Another important observation is that all topologically disconnected diagrams in
the numerator cancel exactly with the diagrams in the denominator, order-by-order
in perturbation theory. This feature is explained graphically in Fig. 1.8 and is a
general feature of the perturbative expansion in field theory .

To zero-th order in the coupling, we trivially recover the unperturbed result:

G2(x, y) = ∆0(x− y). (7.92)

To order λ, only one diagram contributes and gives:

G2(x, y) = ∆0(x− y)− λ

2

∫
dDz∆0(x− z) ∆0(z − y) ∆0(z − z) (7.93)

Notice that, already a this level, a divergence occur since limε→0 ∆0(ε) =∞. This an
example of the famous UV divergences which appear in the perturbative expansion
of all statistical and quantum field theories. They emerge because the locality of the
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interaction equally couples of arbitrary momenta and can be cured by the renormal-
ization procedure. For excellent introductory discussion of modern renormalisation
theory and on the physical origin of UV divergences we recommend the reader to
consult Lepage’s lectures on ”How to renormaliza the Schrödinger Equation” [16].

From this example we can read-off some features which are preserved in the
perturbative calculation of arbitrary n-point correlation function and are usually
referred as Feynman Rules, which are tremendously useful. Indeed, they enable
to derive the results of otherwise lengthy and error-prone calculations, simply by
drawing a limited number of so-called Feynman diagrams. Each of these graphs can
be translated into an equation and represents a family of Wick contractions.

Feynman rules can be formulated both in configuration space and momentum
space. The former are most commonly adopted in statistical field theory, while
the latter are the standard choice to tackle scattering problems in quantum field
theory. The rules in momentum space can be obtained from those in coordinate
space by analysing the result of Fourier transforming the corresponding equations.
A detailed discussion and derivation of Feynman rules can be found in essentially all
introductory quantum and statistical field theory textbooks, such as e.g. [11] and
[13].

Feynman rules for scalar field theory in coordinate space

1. Draw all topologically different connected Feynman graphs, linking the end-
points of the correlation function.

2. Introduce a number of internal vertexes defined by the order of the perturba-
tive expansion, i.e. to the desired order of coupling gα. Each vertex is assigned
a factor −gα where gα is the coupling constant

3. impose the conservation of the total momentum flowing through the vertex.

4. every line joining two points x1 and x2 is assigned a propagator ∆0(x1 − x2).

5. Integrate over all internal points zi:
∫
dDzi

6. To every graph assign the corresponding symmetry factor.

Feynman rules for scalar field theory in momentum space

1. Draw all topologically different connected Feynman graphs, linking the end-
points of the correlation function.

2. Introduce a number of internal vertexes defined by the order of the perturba-
tive expansion, i.e. to the desired order of coupling gα. Each vertex is assigned
a factor −gα where gα is the coupling constant.

3. To every line assign a propagator ∆̃0(k) ≡
∫
dyeik·x∆0(x, 0).

4. Integrate over the momentum flowing inside each loop.

5. Each graph is assigned its symmetry factor
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7.7 Non-Perturbative Methods in Field Theory

In this section, we consider problems in which a perturbative approach is not tenable.
As a prototypical case, we shall mostly focus on the ferro-magnetic transition in
Landau theory. Alternative problems include bound state calculations in Euclidean
(i.e. Wick rotated) quantum field theory.

We refer the reader interested in the phenomenology of ferromagnetic transi-
tions to specialized books on the subject 2. One of the essential features of second
order phase transitions is that correlations function diverge at the critical point.
This striking phenomenon implies that an exponentially large number of degrees of
freedom (representing lattice spins) are simultaneously interacting. This situation
clearly defies the condition of operation of perturbation theory. In Landau theory,
this problem is circumvented by invoking a mean-field approximation which can be
deduced using functional integral methods.

The Landau’s approach was originally derived by directly postulating an expres-
sion for the Gibb’s free-energy as a function of the magnetization M , Γ[M ]. Here, we
follow the approach described in Le Bellac’s Quantum and Statistical Field Theory
book and consider a more microscopic standpoint. Specifically, we start by defining
the field-theoretic Hamiltonian

H[φ] =

∫
dDxφ(x)(−1

2
∇2 +

r0

2
)φ(x) +

u0

4!
φ4(x) (7.94)

In this expression the field φ(x) represent the local spin density and is used to
represent the thermodynamics of the ferro-magnetic material only near the criti-
cal condition. Then, the structure of the Hamiltonian (7.94) can be inferred from
Renormalization Group theory effective field theory arguments. Namely, near the
critical point, the magnetization M(x) = 〈φ(x)〉 is small, thus terms containing
higher power polynomials of fields s also suppressed. In addition, for T ∼ Tc cor-
relation lengths decouple, which that the contribution of higher derivative terms in
the effective Hamiltonian are sub-leading. Finally, in this effective theory we are
allowing the coefficients r0 and u0 to ”run” with the temperature, which effectively
represents a renormalization scale.

Adopting units in which β = 1, the generating functional Z[B] for this theory
reads:

Z[B] =

∫
Dφ e−H[φ]+

∫
dDxφ(x)B(x), (7.95)

Notice that, in expression (7.95), the unphysical external source (usually denoted
with J(x) ) has been replaced a physical external magnetic field B(x). Thus, unlike
in the our previous discussion concerning the path integral derivation of Wick the-
orem, here we are also interested in the most general case in which the source field
is finite. As usual, the Helmotz free-energy in units of 1/β is given by

F [B] = − logZ[B]. (7.96)

2An excellent treatment (which closely resembles the one we are going to give here) can be found
e.g. in Le Bellac’s book (”Quantum and Statistical Field Theory”)
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7.7.1 Saddle-Point Approximation

To infer the emergence of a phase transition, we need to perform a change in ther-
modynamic coordinates, i.e. to implement a Legendre transformation from the
Helmotz free-energy F [B] to the Gibbs free-energy Γ[M ], which explicitly depends
on the local magnetization field, defined as

M(x) = 〈φ(x)〉 = − δ

δB(x)
F [B]. (7.97)

The Gibbs’ Free energy is defined as the Legendre transform

Γ(M) =

(
F [B] +

∫
dDxM(x)B(x)

)

B=B(M)

(7.98)

Note that the magnetic field and the magnetization are conjugate variables, i.e. the
connection between B and M is provided by

B =
∂Γ

∂M

∣∣∣∣
T

(7.99)

To approximatively evaluate the Legendre transform leading to the Gibb’s free
energy, we first evaluate the path integral defining the partition function Z[B] in
saddle-point approximation. To this end, we seek for stationary points of the expo-
nent in the integrant of Z[B]:

δ

δφ(x)

(
H[φ]−

∫
dDyφ(y)B(y)

)
= 0 (7.100)

Let φ̄B(x) be the solution of such an equation for a given choice of the external field
B, i.e.

δ

δφ(x)
H[φ]

∣∣∣∣
φ=φ̄B

= B(x) (7.101)

In saddle-point approximation we have

Z[B] = e−F [B] ∼ N e−H[φ̄B ]+
∫
B(x)φ̄B(x) (7.102)

In order to evaluate the Gibb’s free energy we need a connection between φ̄B and
the magnetization M . To this end, we evaluate:

M(x) = − δ

δB(x)
logZ

' −
∫
dDy

δH[φB]

δφB(y)

δφ̄B(y)

δB(x)
+ φ̄B(x)

+

∫
dDyB(y)

δ

δB(y)
φ̄B(y) (7.103)

Then, using Eq. (7.101)

M(x) = − δ

δB(x)
logZ[B] = φ̄B(x) (7.104)
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Then, using Eq. (7.104) into Eq. (7.98) we find

Γ(M) ∼
(
− logZ +

∫
dDxM(x)B(x)

)

B=B(M)

=

(
H[φ̄B]−

∫
dDxB(x)φ̄B(x) +

∫
dDxM(x)B(x))

)

B=B(M)

= H[M ] (7.105)

Thus, to saddle-point level, the Gibb’s free-energy is obtained by replacing φ
with M into the functional form of the Hamiltonian. This is, however, only true
at the saddle-point level of approximation. In Landau theory, this connection is
exploited to explore the phases of the ferromagnet by assuming that, at the critical
temperature r0 changes sign. In particular, below the critical temperature r0(T ) < 0.
Assuming a uniform system enables to remove spatial dependences. As a result, the
system’s magnetization is the one which minimizes the Gibb’s free-energy:

Γ[M ] = (−r0

2
M2 +

u0

4!
M4) (7.106)

The magnetization is the obtained by looking for stable stationary point configura-
tion. For negative values of r0 we find also solutions for M 6= 0, representing the
ordered phase.

We emphasize that, in general, these equation have been derived in the presence
of an unspecified external magnetic field. To read-off the connection between the
magnetic field and the magnetization, we use Eq. (7.99):

B =
δΓ

δM
= −r0M +

u0

6
M3 (7.107)

which is a standard result of mean-field approximation applied to the Ising Model.
This is no coincidence, indeed to saddle-point level one retrieves only the field con-
figuration φ̄(x) = 〈φ(x)〉 which is the mean-value of the field. A similar situation
was encountered when applying the stationary-phase approximation to the Feyn-
man path integral, yielding the classical path, which (by Erhenfest theorem) evolves
according to the expectation value of position operator. In general, a saddle-point
(or stationary-phase) approximations are always equivalent to a mean-field limit.

7.7.2 Beyond Mean-field: The Ginzburg Correction

Landau theory completely neglects the effects of fluctuations around the mean-field.
Here, we address the problem of perturbatively accounting for the effects of small
fluctuations around the mean-field. We emphasize the fact that this does not corre-
spond to performing a bona-fide perturbative calculation, because the perturbation
is evaluated around a non-trivial mean-field, which was obtained nonperturbatively.

To evaluate leading-order corrections to Landau’s mean-field approximation, we
funcitonally expand the functional at the exponent in the partition function to
quadratic order around the saddle-point. Namely, introducing for convenience

W [φ,B] ≡ H[φ]−
∫
dDyφ(y)B(y) (7.108)
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and ψ(x) = φ−φ̄B(x), where φB(x) is a solution of the saddle-point equation (7.100)
which can be written as

δ

δφ(x)
W [φ,B]

∣∣∣∣
φ=φB(x)

= 0 (7.109)

W [φ] 'W [φ̄B] +
1

2

∫
dDx

∫
dDyψ(x)

δ2W [φ]

δφ(x)δφ(y)

∣∣∣∣
φ=φ̄B

ψ(y) + . . . (7.110)

The linear term in the expansion disappears precisely because φ0 is a saddle-point
field configuration.

After changing integration variable from φ to ψ and retaining this quadratic
form at the exponent, the partition function reads

Z[B] ' N
∫
Dψ e

− 1
2

∫
dDx

∫
dDyψ(x)

δ2W [φ]
δφ(x)δφ(y)

∣∣∣∣
φ=φ̄B

ψ(y)

(7.111)

We note that the path integral is quadratic, thus can be evaluated analytically. The
operator entering the field bilinear term is:

D̂[φ̄B] ≡ δ2W [φ]

δφ(x)δφ(y)

∣∣∣∣
φ=φ̄B

= (−∇2 + r0 +
u0

2
φ̄2
B(x)) (7.112)

We stress that the nonperturbative character of this calculation is intrinsic in the
fact that this operator depends on the nonperturbative mean-field φ̄B.

To evaluate the Gaussian Integral (7.114) we recall the following general result
which holds in any number of dimension:

∫ ∏

k

dxk exp[−
∑

ij

xiOijxj ] = (detO)−1/2 = exp[−1

2
Tr logO] (7.113)

where O is a Hermitian matrix. After extending to infinite dimensions, this result
can be applied to the quadratic form (7.114):

Z[B] ' N e−W [φ̄B ]

∫
Dψ e

− 1
2

∫
dDx

∫
dDyψ(x)

δ2W [φ]
δφ(x)δφ(y)

∣∣∣∣
φ=φ̄B

ψ(y)

=
e−W [φ̄B ]

√
det D̂[φ̄B]

= e−Weff [φ̄B ], (7.114)

where

Weff [φ̄B] = W [φ̄B] +
1

2
Tr log(D̂[φ̄B]) (7.115)

Weff [φ̄B] represents an effective Hamiltonian which includes the effect of fluctua-
tions around the mean-field.

Eq. (7.115) is a formal expression, since the determinant of an infinite dimen-
sional matrix different from identity is in general infinite. To obtain a finite result
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one needs to go through the regularization and renormalization procedure. To this
end, first we note that the logarithm of an operator is defined as its Taylor series

logD =
∑

k

(−1)k−1 (D̂ − 1̂)k

k
(7.116)

Exploiting the linearity of the trace, Tr logD can be evaluated by resumming terms
individually. In particular, the key ingredient is

Tr[D̂[M ]] =

∫
dDp

(2π)D
(p2 + r2

0 +
u0

2
M2) (7.117)

Then after resumming all terms, we obtain:

Tr[log D̂[M ]] =

∫
dDp

(2π)D
log(p2 + r2

0 +
u0

2
M2) (7.118)

Weff [M ] = W [M ] +
1

2

∫
dDp

(2π)D
log(p2 + r2

0 +
u0

2
M2) (7.119)

The integral appearing in the right-hand-side needs to be regularized, according to
the standard renormalization procedure.

In quantum field theory, where the role of the Hamiltonian is played by the
action, the Ginzburg correction is usually referred to as the one-look expression of
the effective action.



Chapter 8

Wilson’s Approach to
Renormalization Group

At the beginning of this course (see Prologue) we introduced the concept of Renor-
malization Group and rigorous effective theory. A pivotal notion at the basis of
the very notion of rigorous effective theory is the idea that the parameters in front
of the counter-terms in an effective theory parametrize our ignorance about the
short-distance (UV) physics which is not resolved by the effective theory.

A natural consequence of this concept is the observation that the effective coeffi-
cients must ”run” with the renormalization scale, i.e. with the energy or momentum
scale Λ at which they are determined by matching the predictions of the effective
theory against experiment or against calculations performed in a more microscopic
theory. As long as Λ is chosen in the gap between UV and IR scales, by slightly
changing it one can gives rise to a whole family of ”equivalent” effective theories,
i.e. theories which represent the same IR physics, but which different in how some
physics near the renormalization scale is represented. Namely, the result of lower-
ing Λ is that of ”re-shuffling” some physical content from the IR sector (explicitly
represented in the Hilbert space) to the UV sector (implicitly parametrized).

In this chapter1, we deal with the problem of deriving the set of partial differen-
tial equations which can be use predict how the set of effective coefficients {Ci(Λ)}i
vary with the renormalization scale. The result is a dynamical system which relates
the same physical system at different renormalization points. Trajectories in this
dynamical system connect families of equivalent theories and define what is called
the Renormalization Group flow. Stability points in this dynamical system plays an
important role, as we shall see. In essence, they represent special set of parameters
which are universal, in the sense that they describe the IR limit of many different
effective theory. But we shall come to discuss this point as we move on.

In the following, we provide a very pragmatic, ”hands-on” brief excursion into
Wilson’s renormalization theory, without attempting to be neither very general,
nor too rigorous. We shall specifically choose a quartic Hamiltonian in the form
of the one used in Landau-Ginzburg theory. However, to keep technical difficulties
to a minimum, we shall consider the specific case in which the quartic coupling
u0 is a small parameter, thus correlation functions can be evaluated by perturba-

1This chapter follows rather closely the discussion in Chapter 12 of Peskin and Schröder’s Book
”An Introduction to Quantum Field Theory”

117



118 CHAPTER 8. WILSON’S APPROACH TO RENORMALIZATION GROUP

tion theory on the quadratic Hamiltoinian. To mark the difference with Landau-
Ginzburg Hamiltonian (which is used for the non-perturbative problem of under-
standing second-order phase-transition) let us here re-write it with a e notation
which is closest to that of the (perturbative) quantum field theory literature,

H[φ] =
1

2

∫
d3xφ(x)(−∇2 +M2)φ(x) +

λ

4!
φ4(x) (8.1)

The partition function is defined as usual

ZΛ =

∫
Dφ e−H[φ] (8.2)

In this expression, the sub-fix Λ has been introduced to remind us that this partition
function is defined up to a finite UV cut-off scale.

8.0.1 Decimation Procedure

The key idea of Wilson’s renormalization approach is to analyze the contribution to
the contribution to the partition functions’ path integral in momentum space. Due
to the presence of a UV cut-off Λ, the Fourier transform of field φ̃(k) is non-vanishing
only within a sphere with a radius Λ, i.e.

φ̃(k) = 0 |k| ≥ Λ (8.3)

(8.4)

All the physics associated to modes with |k| ≥ Λ is implicitly accounted for by the
effective coefficients.

In the regularized theory, the fields φ(x) can be defined as the inverse Fourier
transform of the φ̃(k) fields. Indeed, the contribution from harder modes are sys-
tematically excluded by the presence of the cut-off.

As a first step in Wilson’s renormalization program, we perform the decimation
procedure, which consists in explicitly performing the path integral over a thin shell
of momentum modes, near the edge of the sphere, i.e. for momenta satisfying the
inequalities bΛ < |k| < Λ where b is a number close to 1 defined in the interval [0, 1].

Namely, we split the fields in two as follows:

φ(x) =

∫ |Λ|

0

d3k

(2π)3
eikx φ̃(k) ≡ φ>(x) + φ<(x) (8.5)

φ<(x) =

∫ b|Λ|

0

d3k

(2π)3
eikx φ̃(k) (8.6)

φ>(x) =

∫ |Λ|

b|Λ|

d3k

(2π)3
eikx φ̃(k) (8.7)

We shall refer to the φ> and φ< as the hard and soft field, respectively.
Since the Fourier transformation is unitary the path integral measure can be

split as follows:

∫
Dφ(x)→

∫
Dφ>(x)Dφ<(x) (8.8)
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We then split the contribution of these fields components into the Hamiltonian as
follows

H[φ] = H[φ< + φ>] = H[φ<] + ∆H[φ<, φ>] (8.9)

where ∆H[φ<, φ>] ≡ H[φ> + φ>] − H[φ<] and H[φ<] is the functional form of
the Hamiltonian expressed as a function of the soft field, only. Let us the partition
function introducing the splitting into H<[φ<] and ∆H[φ<, φ>] explicitly (assuming
Einstein’s summation convention):

ZΛ =

∫
Dφ>

∫
Dφ< e−

∫
d3x(∇iφ>+∇iφ<)2+M

2
(φ>+φ<)2+ λ

4!
(φ<+φ>)4

(8.10)

=

∫
Dφ<e−H[φ<]

∫
Dφ>e−

∫
d3x 1

2
(∇iφ>)2+ 1

2
Mφ2

>

e−λ
∫
d3x( 1

6
φ3
<φ>+ 1

4
φ2
<φ

2
>+ 1

4!
φ<φ3

>) (8.11)

In this expression, the soft and hard components of the original field φ(x) are re-
garded as two independent fields and we have explicitly calculated their interaction.
We stress the fact that none of the interactions contains derivatives. This is because,
in this theory, derivative coupling could only come from the kinetic energy term.
However, as we have previously emphasized, the kinetic energy operator is diagonal
in momentum representation, thus does not mix momentum components. The goal
of the decimation procedure is to explicitly performing the integral over the hard
fields, within a perturbative approach. The result is an effective theory defined in
terms of the soft fields only:

Z =

∫
Dφ<e−Heff [φ<] (8.12)

where

e−Heff [φ<] = e−(H[φ<]+Veff [φ<])

e−Veff [φ<] = Z>[φ<] =

∫
Dφ>e−

∫
d3x 1

2
(∇iφ>)2+ 1

2
Mφ2

>+λ
∫
d3x( 1

6
φ3
<φ>+ 1

4
φ2
<φ

2
>+ 1

4!
φ<φ3

>)

(8.13)

We note that the effective interaction Veff [φ<] is basically the Helmotz free-energy
associated with the hard fields, in which the soft fields play the role of an exter-
nal source term. To evaluate it we recall that, in the perturbative expansion, the
partition function can be expressed as a sum of loop diagrams (see e.g. the graphs
in the ”denominator” of Fig. 6.2). In addition, the result taking the logarithm to
relate Veff [φ<] to Z>[φ<] is that of removing all the topologically disconnected loop
graphs, order-by-order in perturbation theory. In conclusion, to evaluate Veff [φ<]
in perturbation theory, we need to sum over to a given order all the disconnected
graphs generated by the Hamiltonian

∆H =

∫
d3x

1

2
(∇iφ>)2 +

1

2
Mφ2

> + λ

∫
d3x

(
1

6
φ3
<φ> +

1

4
φ2
<φ

2
> +

1

4!
φ<φ

3
>

)

(8.14)

in which φ< plays the role of an external source field.
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The key step towards building a perturbative theory is that of computing the
unperturbed propagator, i.e. the Green’s function of the operator defining the field
bilinear, which enters the quadratic part of the Hamiltonian. According to Wick
theorem, this propagator can be used to evaluate the two-point correlation function
of the hard fields, in the unperturbed theory.

〈φ̃>(k)φ̃<(p)〉0> ≡
∫
Dφ̃> φ̃>(k)φ̃>(p)e−H0[φ̃>]

∫
Dφ̃> e−H0[φ̃>]

(8.15)

where

H0[φ̃>] =

∫ Λ

bΛ

d3k

(2π)3
φ̃∗(k)k2φ(k) (8.16)

is the Fourier space expression for the quadratic part of the H[φ] Hamiltonian. We
stress, however, that unlike in the original theory, this expression contains both an IR
and UV cut-off, provided by bΛ and Λ, respectively. Consequently, the propagator
in momentum space reads:

〈φ̃>(k)φ̃<(p)〉0> =
(2π)3

k2
δ(k + p) Θ(k), (8.17)

where

Θ(k) =

{
1 if bΛ < |k| < Λ

0 otherwise.
(8.18)

This propagator can be used to evaluate connected loop diagrams which are
generated by the ∆H Hamiltonian, order by order in perturbation theory. Here,
we consider only the leading-order perturbative correction. We do not evaluate all
diagrams which appear at this order, but only the one that appears after expanding
to leading order the interaction vertex φ̃2

>φ̃
2
<, as an illustrative example.

∫
d3x

λ

4
φ2
<(x)〈φ>(x)φ>(x)〉>0 =

µ

2

∫
d3k

(2π)3
φ̃<(k)φ̃<(−k)

=
µ

2

∫
d3x

λ

4
φ2
<(x), (8.19)

where

µ =
λ

2

∫ Λ

bΛ

d3q

(2π)3

1

q2
(8.20)

This calculation shows that to leading order in the perturbative expansion the in-
tegration over the hard fields generates an effective correction to the mass (i.e.
quadratic) term in the theory of the soft-modes. Thus, removing some hard mo-
mentum component fields from the path integral effectively leads to ”renormalizing”
the mass term. Physics is being shuffled from explicit components in Hilbert space
to effective parameters. Students are encouraged to evaluate other diagrams which
follow from different terms. In particular, to convince themselves that new vertexes
can appear in the effective theory for φ< which are not present in the original (i.e.
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”bare”) Hamiltonian. Including all such corrections, the effective Hamiltonian can
be written as follows:

Heff [φ<] =

∫
d3x

[
1

2
(1 + ∆Z)(∇iφ<)2 +

1

2
(M + ∆M)φ2

<

1

4
(λ−∆λ)φ4

< + ∆C(∇iφ<)4 + ∆Dφ6
< + ...

]
(8.21)

In this expression ∆C and ∆D parametrize the new vertexes generated by the inte-
gration over the hard fields, while ∆Z,∆λ, and ∆M are corrections to terms which
are present also in the bare Hamiltonian. The dots represents terms which appear
only to the next order of perturbation theory and possibly include new vertexes.
Ultimately, this procedure generates all vertexes compatible with the overall sym-
metry of the bare Hamiltonian, as we anticipated in our preliminary discussion on
RG (see Prologue). We stress again that each of these coefficients can be evaluated
order-by-order in perturbation theory and that, due to the simultaneous presence
of an IR and UV cut-off, all calculations are divergence free.

In the end, up to higher corrections in perturbation theory, we have obtained
two equivalent expression of the original partition function:

ZΛ ' ZbΛ (8.22)

The subfix Λ and bΛ have been introduce to emphasize the fact that the two ex-
pression for the partition function are defined using two different UV cut-off scales,
Λ a bΛ respectively.

8.1 Rescaling Procedure

The partition functions ZΛ and ZbΛ are supposed to represent the same physics, up
to higher order perturbative corrections. On the other hand, they have different cut-
offs. To make a more careful comparison between these two theories, it is convenient
to rescale the momentum and length scale in order to match the UV cut-off of the
two theories. To this end, we perform the rescaling transformation:

k′ = k/b x′ = bx (8.23)

Note that the new variable k′ is now bonded by the condition |k′| < Λ. After
rescaling, the partition function:

ZbΛ =

∫
Dφ e−Heff [φ] → Z ′Λ =

∫
Dφ e−H′eff [φ] (8.24)

where

Heff [φ<] =

∫
d3xb−3

[
1

2
(1 + ∆Z) b2 (∇iφ<)2 +

1

2
(M + ∆M)φ2

<

1

4
(λ−∆λ)φ4

< + ∆C b4 (∇iφ<)4 + ∆Dφ6
< + ...

]
(8.25)

Then, we rescale the fields in order for the kinetic energy part to look like in the
bare Hamiltonian:

φ′(x) = [
1

b
(1 + ∆Z)1/2φ(x) (8.26)
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Then, the decimated expression for the partition function finally reads:

Z ′Λ =

∫
Dφ e−H[φ] (8.27)

Heff [φ<] =

∫
d3x

[
1

2
(∇iφ<)2 +

1

2
M2′φ2

<

1

4
λ′φ4

< + ∆C ′ (∇iφ<)4 +D′φ6
< + ...

]
(8.28)

where the new effective coefficients are defined as follows:

M
′2 = (M2 + ∆M2)(1 + ∆Z)−1b−2 (8.29)

λ′ = (λ+ ∆λ)(1 + ∆Z)−2b−1 (8.30)

C ′ = (C + ∆C)(1 + ∆Z)−2b3 (8.31)

D′ = (D + ∆D)(1 + ∆Z)−3b−3 (8.32)

.. ... (8.33)

where the dots represent additional coefficient which may appear at higher order in
the perturbative expansion.

Through the decimation and rescaling procedure, we have defined a continu-
ous transformation in the space of Hamiltonians2. This transformation is expected
to leave the physics unchanged, at least to the specific order in perturbation the-
ory adopted to deriving the corrections ∆Z,∆M2,∆C, .... This means that we can
choose to compute correlations function using any of the theories related by a renor-
malization group transformation of the Hamiltonian, and we expect to obtain the
same answer, up to small perturbative corrections.

8.2 Relevant, Irrelevant and Marginal Operators

The effective parameters in the theories related by RG transformation may be very
different. To analyze more closely how these parameters vary under the RG transfor-
mation let us here consider a theory defined in the vicinity of the origin in parameter
space, i.e.

(M2, λ, C,D, . . . ) = (0.0.0, 0. . . .) (8.34)

This choice is done to ensure the applicability of the perturbative treatment. The
corresponding Hamiltonian is then simply

H0 =
1

2

∫
d3(∇iφ)2 (8.35)

In the vicinity of the point (8.34) we can ignore terms ∆M2,∆Λ, . . . and consider
only the leading (linear) terms, leading to the very simple transformation law:

M
′2 = M2b−2, λ′ = λb−1, C ′ = Cb3, D′ = D (8.36)

2For historic reasons, this set of transformation is usually referred to as the renormalization
group, although it is not really a group, since it lacks the inverse element.
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Figure 8.1: Graphical representation of a fixed point in RG flow
.

Now, we recall that b < 1, which implies that some of these coefficients grow under
RG flow, while other are suppressed. Finally, we note that the D coefficient is left
invariant (these results specifically apply for 3 dimensions, in different dimensions
the relationships may The terms in the Hamiltonian whose coefficient grow under RG
flow are call relevant operators, while those whose coefficient decrease are referred
to as irrelevant. Finally, the terms with coefficients that remain unchanged under
RG are referred to as marginal.

In general the relevance, irrelevance or marginality of an operator can be inferred
by simple dimensional analysis. Namely, in D dimensions, the coefficient of an
operator with N powers of φ and M derivatives transforms as

C ′ = bN(D/2−1)+M−DCN,M (8.37)

The evolution of the effective parameters under RG can be regarded as dynamical
system in the multi-dimensional space of effective theory’s parameters. Stability
points in this dynamical states identify particular sets of parameters, which are
approached by RG flow starting from very different point of parameter space (see
Fig. 7.1). These are called fixed-points and the set of theories evolving to the same
fixed-point form an universality class.
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Chapter 9

Polymer Field Theory

The statistical physics of macromolecular systems involving polymers of different
type and possibly subject to geometrical or topological constraints has been a very
active field or research since pioneering work of Edwards in the 60’s. This is perhaps
in view of the countless implications of this subject: indeed, not only polymers are
the main constituents of glues and plastic, but also life itself is based on polymeric
biomolecules: RNA, DNA and proteins.

In the 70’s De Gennes and collaborators developed one of the most beautiful
theory of modern physics, which established and exploited highly non-trivial for-
mal connections between classical statistical models of polymer with quantum field
theories of several types. This way, many general properties of polymeric systems
could be investigated using powerful analytic tools such as path integrals, along with
renormalisation group and scaling concepts. This nobel-winning work has opened
the way to an entire new branch of theoretical physics, known as polymer field
theory.

The purpose of this chapter is to introduce the very basic elements of this theory
and in particular to illustrate the usefulness of field theory techniques in this context.
For a more exhaustive recent review on this subject see, e.g. [17]. For application
of polymer field theory to biomolecules and in particular proteins, see e.g. [?].

9.1 Gaussian Chains

The canonical partition function for a single chain in solution can be written as
follows1:

Z = N
N∏

k=1

d3rk

N−1∏

l=1

g(rl+!, rl) e
−βH[R] (9.1)

In this equation, R = (r1, . . . , rN ) is a point in the polymer configuration space,
while the function g(rl+!, r) introduces constraints which ensure the chain topology,
and H(R) contains all other interactions, for example those responsible for excluded
volume, hydrophobic effective attraction, or hydrophilic effective repulsion. The

1In the statistical mechanics of polymers, one is usually not interested in the kinetic energy.
Therefore, we assume that the kinetic contribution to the canonical partition function factorizes
and cancels out in the statistical averages. What we refer to the system’s Hamiltoninan is in fact
a potential energy.
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simplest model for a single polymeric chain is one in which the beads are connected
by harmonic springs, while all other interactions are neglected.

In the spirit of effective theory, to derive this model by analyzing the Fourier
transform of g(rl+!, rl):

g̃(k) =

∫
dy eik·y g(y,0) (9.2)

We now rewrite g̃(k) in terms of a function f(k) defined by:

g̃(k) ≡ e−f(k) (9.3)

Finally, we assume to study the polymer thermodynamics at law resolution, where
f(k) can be expanded in Taylor series:

g̃(k) ≡ e−(c0+c2 k2+...) (9.4)

where the odd-terms have been removed assuming the rotational invariance of the
system and c2 > 0.

After transforming back to configuration space, we obtain the so-called Gaussian
chain model, defined by the partition function

Z = N
N∏

k=1

d3rk e
−βH0[R] with (9.5)

H0 =
κ

2

N−1∑

i=1

(ri+1 − ri)
2. (9.6)

From this point on, we shall implicitly assume that energy is measured in units
1/β, i.e. set β = 1. In the limit in which the number of beads in the chain becomes
infiinite, we can turn the sum of harmonic springs in the exponent into an integral.

H0 =

∫ N

0
ds

α

2
ṙ2(s) (9.7)

where s is a continuous curvilinear abscissa which replaces the monomer index.
The continuous version of the Gaussian chain model is sometimes referred to as the
Edwards-Helfand Hamiltonian.

The average distance b between consecutive monomers depends on the spring
constant and on the chain dimensionality. Therefore, it is customary to eliminate α
in terms of these two parameters and obtain:

H0 =
d

b2

∫ N

0
ds

1

2
ṙ2(s) (9.8)

In the following, we focus on the case of chains in 3 dimensions, so the partition
function reads:

Z = N
∫
Dr e−

3
b2

∫N
0 ds 1

2
ṙ2(s) =

∫
drf

∫
dr0 G(rf , N |r0) (9.9)
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where G(rf , N |ri) reads

G(rf , N |r0) = N
∫ rf

r0

Dr e−
3
b2

∫N
0 ds 1

2
ṙ2(s) (9.10)

and can be interpreted as the conditional probability of having the chain endpoint
at position rf , provided that the other endpoint is at r0.

Looking at the path integral expression of G(rf , N |r0) one immediately rec-
ognizes a formal analogy with the imaginary time Feynman propagator of a free
quantum particle. Therefore, G(r, N |r0) is Green’s function of the free Schrödinger
operator:

[
∂

∂s
−
(
b2

6

)
∇2

r

]
G(r, s|r0, 0) = iδ(s)δ(rf − r0) (9.11)

The solution of this equation is given by:

G(r, s|r0, 0) =

(
3

2π b2N

)3/2

e−3
(rf−r0)2

2b2N (9.12)

In the next chapter we shall discover yet another formal mapping, this time between
the imaginary-time quantum propagation and Brownian diffusion. On the basis of
such a duality, the Green’s function G(r, s|r0, 0) can be viewed as the conditional
probability of a freely randomly diffusing particle (cfr. Eq. 3.60). For this reason,
this simple model is sometimes referred to as a Brownian chain.

This analogy can be exploited to compute the mean square distance between the
chain’s endpoint. By using the random walk Green’s function (9.12) we obtain:

〈(rf − r0)2〉 =
1

3
b2N (9.13)

Which reflects famous Einstein’s law for random walk. Thus, this simple model
yields the scaling law 〈(rf−r0)2〉 ∝ Nα with α = 1/2. A typical problem of polymer
physics consists in determining the scaling exponent α for more complicated models.
In the following we discuss a field theoretic solution of one of these models, in which
a local pairwise interaction is introduced in order to account for excluded volume.

9.2 Self-Avoiding Chain

Let us now consider a more realistic model in which the beads in the chain have a
short-range interactions which are repulsive at short-distance (preventing any pair of
them to be at the very same location) and possibly attractive as some intermediate
distance. This request can be implemented by adding new terms to the Gaussian
chain Hamiltonian:

H =
3

b2

∫ N

0
ds

1

2
ṙ2(s) +

1

2

∫ N

0
ds′
∫ N

0
ds V2[s, s′; r(s), r(s′)] + ... (9.14)

where . . . denote possible three-body correlations. Here we consider the simplest
choice for V2(r, r′), which is of course a delta-function:

V2(r, r′) ≡ vδ(r1 − r2). (9.15)
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We emphasise that the partition function contains a nonlocal pair-wise inter-
actions. In the dual picture based on the mapping with quantum propagation in
imaginary time, such a non-locality is equivalent to a retardation effect. Indeed, shall
now see that, in complete analogy with quantum field theory, locality of interactions
can be recovered introducing auxiliary fields which ”mediate” the interaction.

The most instructive way to do so is by introducing auxiliary fields into the path
integral and using the techniques to evaluate Gaussian path integrals discussed in
the previous chapter. We begin by introducing a density field into the path integral
defining the partition function 2 by means of an appropriate functional delta:

Z = N
∫
Dρ

∫
Dr e−

3
b2

∫N
0 ds 1

2
ṙ2(s)− v

2

∫N
0 ds

∫N
0 ds′

∫
d3x

∫
d3yδ(x−r(s)) δ(y−r(s′)) δ(x−y)

δ

[
ρ(x)−

∫ N

0
dsδ(x− r(s))

]

= N
∫
Dρ

∫
Dr e−

3
b2

∫N
0 ds 1

2
ṙ2(s)− v

2

∫
d3xρ2(x) δ

[
ρ(x)−

∫ N

0
dsδ(x− r(s))

]

(9.16)

Next, the functional delta is represented in terms of its Fourier integral, by intro-
ducing one more functional integral over the Fourier-conjugate field φ(x):

δ

[
ρ(x)−

∫ N

0
ds δ(r(s)− x)

]
=

∫
Dφei

∫
dx φ(x)ρ(x)−i

∫N
0 dsφ(r(s)) (9.17)

As before, the partition function is completely determined by the two-point corre-
lation function G(r, N |r0), which now reads

G(r, N |r0) =

∫
Dρ
∫
Dφ e−

∫
d3x[ v2 ρ(x)2−iφ(x)ρ(x)]

∫ r

r0

Dr e−
3
b2

∫N
0 ds ( 1

2
ṙ2(s)+iφ(r(s))

(9.18)

The integral over the ρ(x) field is now Gaussian and can be carried out analytically
using the Green’s function technique developed in the previous chapter. Up to an
irrelevant normalization factor we obtain:

G(r, N |r0) =

∫
Dφ e− 1

2v

∫
d3xφ(x)2

∫ r

r0

Dr e−
3
b2

∫N
0 ds ( 1

2
ṙ2(s)+iφ(r(s))

(9.19)

The term

G[φ](r, N |r0) =

∫ r

r0

Dre−
3
b2

∫N
0 ds ( 1

2
ṙ2(s)+iφ(r(s)) (9.20)

can be interpreted as an imaginary-time Feynman’s path integral describing a quan-
tum particle interacting with a complex external potential iφ(x). Such a Green’s

2From this point on we shall no longer keep track of the irrelevant normalization multiplicative
factor N in the expression of the partition function.
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function corresponds to diffusion of a particle in an imaginary (random) external
potential φ, i.e.

[
∂

∂s
−
(
b2

6

)
∇2
x + iφ(x)

]
G[φ](x, s|ri, 0) = δ(s)δ(x− ri) (9.21)

Therefore, so far we have shown that the excluded volume effects can be exactly
represented by a stochastic average over an external field φ(x).

Using the coherent state path integral representation introduced in the previous
chapter it can be written in path integral form as3 :

G(r, N |r0) =

∫
Dφe− 1

2v

∫
d3xφ2(x)

∫
Dψ∗Dψ ψ(r, N) ψ∗(r0, 0)

e
−
∫N
0 ds

∫
d3x ψ∗

(
∂
∂s
− b

2

6
∇2+iφ(x)

)
ψ

(9.22)

Finally, we integrate over the Gaussian φ(x) field, which leads to the following final
expression:

G(r, N |r0) =

∫
Dψ∗Dψ ψ(r, N) ψ∗(r0, 0) e

−
∫N
0 ds

∫
d3x

[
ψ∗
(
∂
∂s
− b

2

6
∇2

)
ψ− v

2

∫N
0 ds′|ψ(x,s)2|ψ(x,s′)|2

]
(9.23)

Thus, we have obtained the expression for the partition function of a self-avoiding
chain as a propagator in a non-relativistic φ4 theory.

9.2.1 Breakdown of the perturbative approach

The most natural starting point to analyse the effect of excluded volume effects is to
solve the theory in the perturbative limit of small coupling v. Explicit calculation
of 〈R2〉 in this limit yields (for an arbitray number of dimensions d):

〈R2〉 = Nb2
[
1 +

4

3
(vb2N)(4−d)/2 + . . .

]
(9.24)

Calculations show that perturbative corrections always come with powers of v
√
N �

1. Since vN = v
√
N
√
N →∞, perturbative approach breaks down for any dimen-

sion smaller than 4, including the physically relevant d = 3 case. The breaking of
perturbation theory reflects the fact that the perturbative expansion parameter is
not v itself, rather the combination v

√
N which is never small, in the continuous

limit model we are considering.

3The careful reader might have noticed that in this coherent path integral expression we have
dropped the overall boundary-term phase factor eiL(t) which is due to the over-completeness of
the coherent state basis (cfr. Eq. (1.85)). The justification for this is the following. Let us
imagine to expande this exponent to an arbitrary order in powers of the fields. To all orders in
perturbation theory Wick contractions with this term will give rise to diagrams in which at least
one line propagates backwards in time. However, in non-relativistic quantum mechanics (both
in real and imaginary time, such diagrams vanish because of causality. For the same reason we
have dropped the path integral associated to the normalisation of the propagator (sum over loop
diagrams)
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Therefore we need to tackle the case in which excluded volume effects are not
small, and evaluate the propagator (9.23) within a fully non-perturbative approxi-
mation scheme. A standard approach consists to perform the saddle-point expan-
sion, which is equivalent to a mean-field approximation. Imposing the stationarity
of the exponent with respect to variations of the ψ∗ we obtain a time-dependent
Gross-Pitaevski equation:

(
∂

∂s
− b2

6
∇2 + v|ψ(x, s)|2

)
ψ(x, s) = 0 (9.25)

This self-consistent equation can be solved with standard iterative schemes. Varia-
tion with respect to φ yields the complex conjugate of this equation.

9.3 Grand-Canonical Ensemble of Many Chains

In the previous section we have discussed the thermodynamics of a single chain in
solution. Let us now generalise to the case in which the system consists of a fixed
number n of polymers. The partition function for this system is

Z(n) =
e−

Nn
2
V [0]

n!(λ3
T )

n∏

j=1

∫
Dr e−

∑n
k=1

d
b2

∫N
0 ds 1

2
ṙ2
k(s)+

∑n
k,l=1

1
2

∫N
0 ds′

∫N
0 ds V [rk(s)−rj(s

′)]

(9.26)

where the exponent in the pre-factor has been introduced for convenience.

We can now apply the bosonization scheme deviced for one chain. The re-
sult of introducing auxiliary fields through appropriate functional deltas and then
integrating out Gaussian fields is equivalent to exploiting the so-called Hubbard-
Stratonovich transformation:

exp

[
−v

2

∑

kl

∫ N

0
ds

∫ N

0
ds′δ

(
rk(s)− rk(s

′)
)
]

= N
∫
Dφ exp

[
− 1

2v

∫
d3x φ2(x)− i

∫ N

0
ds φ(r(s))

]
(9.27)

The n polymer partition function can then be written as:

Z(n) = Z0

∫
Dφ exp

[
− 1

2v

∫
d3x φ2(x)

]
Qn[iφ], (9.28)

where Q[iφ] is the single chain partition function in the background of the external
field iφ and

Z0 =
1

n!

(
e
N
2
V (0)

λ3N

)n
(9.29)

Now we can finally consider the grand-canonical partition function. For sake of
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clarity we now restore the explicit temperature dependence:

Ω(µ, β) =
∞∑

n=0

eβµnZ0

∫
Dφ exp

[
− 1

2v

∫
dxφ2

]
Qn[iφ] (9.30)

=

∞∑

n=0

∫
Dφ exp

[
− 1

2v

∫
dxφ2

]
(z′ Q[iφ])n

n!
, (9.31)

=

∫
Dφ exp

[
− 1

2v

∫
dxφ2

]
exp[z′Q] (9.32)

where µ is the chemical potential and z′ is the so-called chain activity

z′ =
eβµ+N

2
V (0)

λ3N
(9.33)

Let us now rewrite the grand-canonical partition function

∑

n=0

(z′ Q[iφ])n

n!
=

∑

n=0

[
z′
∫
dri
∫
drfG[iφ](rf , N |ri, 0)

]n

n!
(9.34)

Recalling that

G[φ](rf , N |ri) = 〈0|ψ(rf , N)ψ†(ri, 0)|0〉iφ (9.35)

we find

∑

n=0

(z′ Q[iφ])n

n!
=

∫
Dψ∗Dψe−Ho(iφ)+

√
z′
∫
d3r(ψ∗(r,0)+ψ(r,N))

∫
Dψ∗Dψe−Ho(iφ)

(9.36)

The latter equality can verified by inspection by expanding to all orders the second
exponent: any term with odd number of fields disappears, while all terms with an
even number give raise to powers of correlations functions...

Finally, completing the Gaussian integral over the field φ we find our final ex-
pression:

Ω(µ) =

∫
Dψ∗

∫
Dψ exp(−H[ψ∗, ψ]) (9.37)

where the functional H reads

H =

∫
ds

∫
d3x

[
ψ∗(x, s)

(
∂s −

b2

6
∇2

)
ψ(x, s) +

v

2
|ψ(x, s)|4

]

−
√
z′
∫
d3r(ψ∗(r, 0) + ψ(r, N)) (9.38)
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Appendix A

Basic Chemistry of Biopolymers

A.1 Introduction

Typical molecules of biological importance contain a number of atoms which can
range form 103 — for some small poly-peptides—- to 104 for typical globular pro-
teins, up to 107 or larger for RNA and DNA strands, membranes and so on. Such
large molecules play a fundamental role in all living organisms. Hence, understand-
ing their dynamics would have potentially infinite biomedical implications.

From a physical point of view, RNA and proteins are (bio)-polymers, i.e. molecules
made by the several sub-units called monomers, which are linked together to form
a chain. In the case of proteins and RNA at room temperature, the chain folds to
form a well-defined three-dimensional structure, called the native state.

The monomers forming the chain of such macromolecues are kept together and
linked to one another by chemical bonds which can never be spontaneously broken,
at room temperature. In addition, there are long range Coulombic correlations, and
short range steric effects, hydrogen bonds, sulfur bridges, and so on.

Like most other strongly correlated systems, biopolymers exhibit critical behav-
ior, i.e. collective phenomena which drastically change the physical properties of
the system and take place around a well defined temperature For example, above
the so-called unfolding temperature, proteins and RNA swell and assume coil con-
figurations. it is impropriate however to speak about a true phase transition, since
macromolecules are not infinite systems. In fact, biopolymers are typically consid-
ered as prototypes of mesoscopic systems. This adjective implies that the effect
associated to their finite size are generally important and cannot be neglected.

The presence of strong correlations and significant finite-size effects make the
theoretical modeling of macromolecules a challenging task. In fact, the strong cor-
relations prevent from using perturbative approaches, while finite size effects make
it impossible to rely on the thermodynamical limit. As a consequence of such dif-
ficulties, modern approaches to the study of the physics of macromolecules must
rely on computers. In this context, the continuous developments of new theoretical
tools in statistical mechanics, the progress in our understanding of the intra-atomic
interactions are deeply intertwined with the development of new algorithms and new
computing machines. This combination makes this a field very intriguing and keeps
it in continuous evolution.

This course provides a brief introduction to the fundamental tools of statistical
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mechanics and of computational physics which are used to model the dynamics and
thermodynamics of macromolecules. The rest of this chapter contains an elementary
introduction of the biochemical and biophysical aspects of macro-molecules, and in
particular of proteins and RNA, which will be the main subject of our study. In the
subsequent chapters will introduce elements of equilibrium and out-of-equilibrium
statistical mechanics and discuss how the relevant equations can be put on a com-
puter and solved. The last chapter is devoted to the presentation some example of
applications of numerical simulations to model physical aspects of biopolymers.

A.2 Interactions inside Macromolecules

As a first step, let us analyze the interactions between the various atoms present
in a macromolecular system. At the microscopic level there are only Coulombic
interactions between electrons an nuclei. However, such a microscopic approach is
at present out of reach as it would require to solve a Schrodinger Eq. with a pro-
hibitively large number of electrons. Hence, chemists and physicists have instead
analyzed interactions at a more macroscopic level: they introduce semi-empirical
interactions which can then be included in energy minimizations, molecular dynam-
ics, Monte Carlo calculations, etc... Along these lines, one may distinguish two main
types of interactions:

A.2.1 Bonded

These are the covalent bonds between the atoms of the molecule. their energy range
is from 50 kCal/mole to 150 kCal/mole. They correspond typically to 100 kBT at
room temperature, and therefore cannot be broken by thermal fluctuations.

A.2.2 Non Bonded

These are non-covalent interactions between the atoms in the molecule. Their energy
range is from 1 to 5 kCal/mole. They are thermally excited at room temperature,
and are thus responsible for the dynamics and observed dynamical and thermody-
namical properties of macromolecules.

There are several types of non-bonded interactions:

• Coulomb:

The electronic structure of an atom inside a group of other atoms in a molecule
is distorted with respect to the electronic distribution of the same in vacuum.
As a result, while atoms in vacuum are neutral, in the empiric force fields they
are assigned partial charges qj (smaller than one electronic charge). Conse-
quently atoms interact through Coulomb interaction

vC(r) =
qiqj
ε

1

r
(A.1)

The question of the relative dielectric constant is a matter of debate and
depends on the specific model. For two atoms in bulk water the dielectric
constant is about 80 times larger than in vacuum.
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• Van der Waals:

This interaction accounts for the strong steric repulsion at short distances,
and the dipolar attraction at larger distances. It is usually represented by a
Lennard-Jones 6-12 potential of the form:

vLJ(r) = 4ε

(
A
σ12

r12
−Bσ

6

r6

)
(A.2)

• Hydrogen bonds:

The hydrogen bond between two atoms is the result of having one hydrogen
atom... The interaction responsible for the formation of H-bonds can be in-
troduced explicitly by a 6-10 potential similar to the Lennard-Jones potential,
but it is now quite accepted that H-bonds are just a result of the combination
of Coulomb and Van der Waals interactions.

• Interactions with water:

Water is a dipolar molecule, and thus has strong interactions with charged
or dipolar groups. Since proteins are active in an aqueous environment, the
interaction with water must be taken into account. This is the origin of the
hydrophobic effect: hydrophobic amino-acids such as phenylalanine, tripto-
phan, valine, and leucine are usually buried inside the globule, whereas polar
or charged groups such as lysine, arginine are located at the surface of the
globule, in contact with water. The molecular basis of the hydrophobic effect
is still a subject of investigation. Nevertheless, it is generally believed to be
entropic in origin, with an important role played by the entropy change of the
solvent.

The contribution to the total free energy of the folding coming from the packing
of the hydrophobic groups is, in general, positive i.e. unfavorable, both from
the enthalpic and entropic point of view. On the other hand, it is believed
that water molecules are locally ordered around non-polar residues, leading to
cage-like structures, associated to a network of hydrogen bonds. The burying
of non-polar residues inside the globule reduces the amount of local order
of water molecules around the protein, hence it leads to entropy production.
This contribution is believed to be the dominant one in the total solvation free
energy.

A.3 Fast and Slow Degrees of Freedom

In view of the above classification of the interactions, one can distinguish two types
of degrees of freedom in macromolecule:

• Hard degrees of freedom: these are the covalent bonds (linking covalently two
atoms along the chain), the valence angles (angle between two covalent bonds)
and the peptide bond. These degrees of freedom are very rigid at room tem-
perature, since, as we shall see later, their deformation requires energies much
higher than the thermal energy kT .
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Figure A.1: The ball-and-stick representation of a simple amino acid (GLY)

• Soft degrees of freedom: they are essentially the torsion angles along the back-
bone chain (usually denoted with φ and ψ), and of the side chains (usually
denoted with ω1, ω2, ... Their energy scale is such that they can easily ßuctuate
at room temperature (see Fig. A.3).

The characteristic oscillation frequencies ωi of the hard degrees of freedom is
such that, at room temperature, ~ωi is comparable with (actually larger than) the
thermal energy kBT . Hence, the dynamics of such set of degrees of freedom is
expected to be sensitive to quantum effects. On the other hand, the soft degrees of
freedom have typical energies much smaller than the thermal energy and therefore,
for them, a classical description is appropriate.

In first approximation, it seems natural to consider all the bonded interactions
as frozen, hence implying that the primary structure is quenched so that only the
non-bonded terms in the inteaction have to be taken into account.

A.4 Proteins

Proteins are biological molecules, present in any living organism. Their biological
function includes catalysis (enzymes), transport of ions (hemoglobin, chlorophyll,
etc...), muscle contraction, ... They also are present in virus shells, prions, etc.

The chemical reactions which are relevant for the biological activity of a protein
take place in the so-called ”active site” of the molecule, which is usually formed by
a small subset of its atoms.

Proteins belong to the group of ıbiopolymers, which also comprise nucleic acids
(DNA, RNA) and polysaccharides. In general biopolymers are heteropolymers, i.e.
they are made out of different species of monomers. In particular, in proteins, the
monomers are the 20 different amino-acids.

A.4.1 Amino-acids

The chemical formula of an amino-acid can be written as:

NH2 − CαHR− COOH (A.3)
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The NH2 part is called the amine group, the COOH part is the acidic group1.
Each amino acid is characterized by its residue R. The list of amino acids (along

with their common three-letter label) is: Alanine (ALA), Isoleucine, Leucine (LEU),
Methionine, Phenylalanine, Proline (PRO), Tryptophan (TRP), Valine (VAL), As-
paragine (ASP), Cysteine (CYS), Glutamine (GLU), Glycine (GLY), Serine (SER),
Threonine (THR), Tyrosine (TYR), Arginine (ARG), Histidine (His), Lysine (LYS),
Aspartic acid, Glutamic acid.

For instance, the chemical formula of ALA is:

NH2 − CαH −CH3 − COOH (A.4)

and that of tryptophan is:

NH2 − CαH −CH2 −C−CH−NH−C6H4 − COOH. (A.5)

In both formulas the bolded atoms are those forming the residue. The smallest
residue is glycine, which is just a single H atom, and the largest is tryptophan,
which contains ten heavy (i.e. non-hydrogen) atoms.

The typical size of a protein ranges from approximately 100 amino acids for
small proteins to 500 for long immuno-globulins.

Amino acids can be classified according with their electrostatic properties:

• Neutral, non-polar:
Alanine, Isoleucine, Leucine, Methionine, Phenylalanine, Proline, Tryptophan,
Va- line.

• Neutral, polar:
Asparagine, Cysteine, Glutamine, Glycine, Serine, Threonine, Tyrosine.

• Positively charged:
Arginine, Histidine, Lysine.

• Negatively charged:
Aspartic acid, Glutamic acid.

Charged residues are always hydrophilic, because of the large polarizability of water,
while non-polar neutral residues are hydrophobic.

A.4.2 Polycondensation and peptidic bonds

The chemical reaction leading to the binding of the amino-acids into a protein is
called poly-condensation, which can be schematically written as:

NH2 − CαHR1 − COOH +NH2 − CαHR2 − COOH →
→ NH2 − C −HR1 − CONH − CαHR2 − COOH +H2O (A.6)

The poly-condensation produces a Òpeptide bondÓ CONH , represented in Fig.
A.2. Due to electronic hybridization, this bond is strongly planar.

The repetition of this process produces a polypeptide chain. Proteins are there-
fore polypeptide chains whose chemical composition is entirely characterized by the
sequence of residues R1, R2, ..., RN . The sequence of C,Cα and N atoms connected
by peptide bonds in the polypeptide chain is called the backbone of the chain.

1With the exception of proline, which has an imine group instead
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C!

C!O

H

C N

Figure 1: Peptide bond. The thick line denotes the backbone.

The above gross classification of amino acids refers to their interactions with water,
their natural solvent. Group 1 is made of non polar hydrophobic residues. The three
other groups are made of hydrophilic residues. From an electrostatic point of view, group
2 corresponds to polar neutral residues, group 3 corresponds to positively charged residues,
and group 4 to negatively charged ones.

The typical size of a protein ranges from approximately 100 amino acids for small
proteins to 500 for long immuno-globulins. Due to this rather small size, knots are not
present in proteins.

A protein is made by polycondensation of amino acids, which can be schematically
written as:

NH2 − CαHR1 − COOH + NH2 − CαHR2 − COOH →
NH2 − CαHR1 − CONH − CαHR2 − COOH + H2O (4)

The repetition of this process produces the protein, a weakly branched polymer, charac-
terized by its chemical sequence R1, R2, · · · , RN .

The polycondensation produces a “peptide bond” CONH, represented in Fig. 1.
Due to electronic hybridization, this bond is strongly planar.
One can distinguish two types of degrees of freedom in proteins:

1. Hard degrees of freedom: these are the covalent bonds (linking covalently two atoms
along the chain), the valence angles (angle between two covalent bonds) and the
peptide bond. These degrees of freedom are very rigid at room temperature, since,
as we shall see later, their deformation requires energies much higher than kT .

2. Soft degrees of freedom: they are essentially the torsion angles along the backbone
chain, and of the side chains. Their energy scale is such that they can easily fluctuate
at room temperature.

1.2 The possible states of proteins

Qualitative description of the phases

Although it was long believed that proteins are either denatured or native, it seems now
well established that they may in fact exist in at least three different phases. Originally,
the phases referred to the biological activity of the protein. In the “native phase”, the

3

Figure A.2: Peptide Bond. The thick line denotes the back-bone!"#$%!&'()*&+,-.)/
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Figure A.3: The torsional angles Φ and Ψ along a peptide bond.

A.5 Nucleid Acids

Another important group of biopolymers are the nucleid acids, which play a fun-
damental role in cells and in viruses as they carry genetic information. The most
common nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA).
Along with them, there are also artificial nucleic acids, which include peptide nucleic
acid (PNA), Morpholino and locked nucleic acid (LNA), as well as glycol nucleic acid
(GNA) and threose nucleic acid (TNA). Each of these polymers is distinguished from
naturally-occurring DNA or RNA by changes to the backbone of the molecule.

From a physical-chemical point of view, nucleic acid is a macromolecule com-
posed of chains of monomeric nucleotides. Nucleotides are therefore the structural
units of RNA and DNA and consist of three joined structures: a nitrogenous base,
a sugar, and a phosphate group. The most common nucleotides can be divided into
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two groups —purines and pyrimidines— based on the structure of the nitrogenous
base. The joined sugar is either ribose or deoxyribose.

Nucleotides can be synthesized with both purine and pyrimidine as bases. In
DNA, the purine bases are adenine and guanine, while the pyrimidines are thymine
and cytosine. RNA uses uracil rather than thymine (thymine is produced by adding
a methyl to uracil). The nucleotide passes through numerous biochemical steps
while being processed, adding and removing atoms through the use of numerous
enzymes.
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